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EDITORIAL 

I always think that declination lines on a sundial add extra 
interest and give the design a lift above the ordinary—see 
the cover picture as an example.  Some diallists find that 
laying out these lines is rather more difficult than just draw-
ing the hour lines so, in this issue, we have two papers 
(p.128 and p.137) giving quite different methods by which 
it can be simply done.  These methods are in addition to the 
more numerical methods which adherents to computer 
spreadsheets may prefer. The choices for the location of the 
origins and the directions of the x- and y-co-ordinates are 
different in the two papers but they give the same an-
swers—we’ve checked! So, you sundial designers, let’s see 
some more dials with these lines, please. 

I would like to start a new semi-regular feature on ‘New 
Dials’. In recent issues we have highlighted dials from, for 
example, David Brown and Joanna Migdal but I would like 
to spread the net much wider.  The new feature is intended 
to be mainly pictorial and feature dials from both profes-
sional and amateur makers, including non-BSS members.  
The dials may be public or private: for the latter, the owners 
should give permission but the exact location need not be 
disclosed and the dials do not need to be viewable either by 
members or by the public.  So, please send me a couple of 
pictures whenever you know of a new dial being ‘unveiled’, 
together with a few details of why the dial was made, what 
it’s made from, where (roughly) it is, who made it and so 
on.  Over to you! 
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Introduction 

In Part 31 we discussed Pilkington’s elegant development of 
the Sol Horometer in which he sought to improve and sim-
plify the Helio-Chronometer (HC)2 that had been designed 
by his partner Gibbs. This led to considerable disharmony 
in which Gibbs was ever-ready to seek royalties for in-
fringement of the Helio-Chronometer patent.3 The most 
significant ‘improvement to sundials’ cited in both patents 
was the method of automatically applying an adjustment to 
indicated solar time in order to obtain mean time. Pilking-
ton’s solution of two concentric unequal scales in juxtaposi-
tion was sufficiently different to Gibbs’ earlier method of a 
sighting vane whose datum was offset by means of a lever 
and EoT cam, to allow the Sol Horometer patent4 to be ac-
cepted. But the story does not quite end there although the 
instrument described here is not a sundial. Possibly embold-
ened by his success with the Sol Horometer and his recently 
acquired understanding of the relationship between solar 
and mean time at any longitude, Pilkington decided to de-
velop his unequal scale idea and produce an extremely neat 
device that many modern sundial enthusiasts might wish to 
own. The resulting patent demonstrates some nice engineer-
ing ingenuity but quite unexpectedly includes use of an EoT 

cam groove, just as described in the HC patent registered to 
Gibbs. (The groove was not implemented on the production 
models of the HC, probably for cost reasons.) I have never 
seen Pilkington’s device nor is the BSS currently aware of 
any in museums, although it is hoped that this article may 
lead to an identification. The only source material available 
is a P&G promotional leaflet and the two implementations 
described in the patent, circa 1914. 5 

It is fitting to conclude this introduction with the words 
from the P&G promotional leaflet, which, although rather 
romantic in parts, are just as relevant now, nearly 100 years 
later, as they were to the ‘hustle and bustle’ of 1914.    

There can be no question, the old-fashioned Sundial of 
our fathers’ days still retains its place in the hearts and 
affections of a great number of people. Its beauties and 
associations have been told in song and story for many 
generations and to try to oust it from its place of honour 
would be looked upon as a piece of vandalism from 
which even the present go-ahead generation would 
shrink. There is still in us a vein of sentiment that draws 
us to a quiet corner of the garden to which our fathers 
loved to retire and where - as a centre of interest - one 
invariably found “The Sundial.” 

It may be for better, it may be for worse that times have 
changed, and, instead of placid, quiet lives, we live lives 
full of hustle and bustle; whatever it may be, there is no 
doubt our days are ordered on more strenuous lines 
than of yore and to know “what is the time” is now an 
imperative essential. 

Realising and respecting the sentiment attaching to the 
old sundial, and in response to an oft-repeated question, 
“Can you not give us something to enable us to easily 
read correct time (clock time) from the sundial?” we 
have devised a little instrument which we call 

“The Mechanical Equation Table” 

By the aid of this little contrivance the old sundial is 
brought into use as an actual Standard (Clock) Time 
dial. 

Description 

The purpose of the device was to provide a mechanical 
method whereby the EoT of the day could be added alge-
braically to the longitude correction so that the result could 
be indicated on a signed scale of minutes. The Mechanical 
Equation Table seen in Fig. 24 is actually a circular metal 
assembly about 3.5inches in diameter with various scales 

A REVIEW OF THE HELIOCRONOMETERS BY 
PILKINGTON & GIBBS 

 
Part 4.   THE MECHANICAL EQUATION TABLE 
 

GRAHAM ALDRED 

Fig. 24.  Photograph of “The Mechanical Equation Table” 
from the P&G promotional leaflet, circa spring 1914. Used 
for relating mean time and sundial time on conventional 
sundials.  
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and a pointer. It was intended that it would be either carried 
in the pocket of a dialling enthusiast or fixed permanently 
in the proximity of a conventional sundial to allow a user to 
obtain the appropriate adjustment for the day in order to 
obtain mean time from the indicated sundial time. Two im-
plementations of the concept were described in the patent5: 
the image in Fig. 1, a scan of an actual photograph, is the 
second version (V2) which was actually manufactured and 
offered for sale. Therefore V1 may not ever have been pro-
duced except as a prototype. Nevertheless, since almost all 
design is evolutionary, it is important to examine V1 which 
is the child of the Sol Horometer and then see how and why 
this led to V2 which owes so much to the Helio-
Chronometer. Could it be that this convergence of the two 
designs in this one little instrument signalled a reconcilia-
tion between the partners?   

Version 1 

The front view is shown in Fig. 25. As with the Sol Horo-
meter, there is a pair of concentric discs with scales in daily 
increments for each month arranged around the abutment 
circle. Scale B has regular divisions whilst scale A is di-
vided to recognise the current EoT value. The inner disc (B) 
can rotate relative to the fixed outer disc on a circumferen-
tial bearing but is mechanically restricted within the limits 
of EoT range. The user must align the current date on each 
of the scales. There are two other scales on the inner disc. 
These have central zeros to provide positive and negative 
readings and are arranged in suitable arcs for the sweep of 
the double ended pointer. Scale D provides the output read-
ing of the instrument, which is the result in minutes of the 
algebraic sum of EoT plus Longitude correction. Initially it 
is assumed that the longitude setting on scale E is zero de-
grees.  

Fig. 26 shows the back of the instrument with a cover re-
moved. This reveals Pilkington’s compact solution to the 
problem of how to communicate the variable EoT offset, 
available from the date conjunction, to the pointer spindle 
to provide the difference reading. There is a circular back-
plate which retains the inner disc on its circumferential 
bearing with two screws as shown. The projecting tab at the 
top of the Fig. 26 restricts movement to the EoT range. 
When the inner disc is rotated the backplate and all its com-
ponents move as well. The pointer is screwed into a boss 
(A) on the small crank at the centre of the figure. The slot-
ted lever is pivoted on peg B mounted on the backplate. Peg 
C is screwed into the fixed body of the device and this pro-
vides the datum for the relative motion. It protrudes through 
a slot as wide as the annual EoT range in the moveable as-
sembly to engage with the short slot in the long slotted 
lever. When the assembly is rotated peg C causes the long 
arm to swing relative to the backplate on its pivot at B. The 
motion of the inner disc is thus transmitted via peg D to the 
crank into which the pointer is screwed at A. This causes 
the pointer to rotate in relation to the EoT value derived 
from the unequal scales. In fact, by analysing the relative 
dimensions of Fig. 26 given in the patent and ratified by the 
photograph at actual size (Fig. 24), the mechanism doubles 
the EoT input angle at the pointer. This would certainly 
help with the division separation on the output scale which 
is only on a 20mm radius circle and would be difficult to 
use accurately.  

The fixed longitude value is provided by manually rotating 
the pointer in the threaded boss (A) by the required amount 
either East or West. The backplate assembly shown in Fig. 
26 is unaware that the pointer has been moved away from 

Fig. 25.  Front view of version 1 of the instrument as drawn 
in the patent. This EoT system with two unequal day scales 
is borrowed from the Sol Horometer. B is the movable 
scale. The result of the algebraic sum of EoT plus Longi-
tude is indicated by the pointer on the innermost scale. 

Fig. 26.  Rear view of the movable plate showing the lever 
system that transmits the rotation for EoT to the pointer 
spindle. The long lever is pivoted at B, the peg at C is the 
fixed datum protruding through a slot equal to EoT range. 
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its zero datum, consequently the longitude correction in 
minutes is now included in the algebraic sum. Although the 
longitude scale is marked in degrees, the major scale inter-
val would equal 4 minutes because both scales share the 
same pointer arm. 

Design Review 

We must assume that Pilkington had made a prototype V1 
and had reluctantly recognised all the practical production 
problems relating to the very small scales that he had pro-
posed. Basically, he was trying to make a Sol Horometer 
pair of unequal scales at a radius of about 21mm. This was 
to be the source of the vital EoT correction, a small angular 
displacement to be transmitted through a lossy mechanical 
system, involving two non centric circles of even smaller 
and different radii. On the larger parent Sol Horometer 
(SH) the date scales are at 80mm radius giving fixed scale 
days at about 1mm intervals. Even so, on the SH movable 
scale, November is only about 2.5mm longer than the fixed 
month in arc length. This is a measure of the small angular 
difference that must be shared amongst the 30 day divisions 
on the unequal scale. Consequently on the new device, at a 
quarter of the size, the two Novembers would only differ by 
about 0.6mm arc distance over the whole month and the 
fixed days would be at about 0.25mm separation including 
the division line. Pairs of Sol Horometer type scales at this 
radius are just not practical either to manufacture or to use; 
the fundamental lack of accuracy would have defeated the 
purpose of the instrument.  

A Difficult Decision 
But Pilkington persisted with the concept and having been 
forced to reject his own unequal scale system as quite im-
practical at the chosen size he must have turned to the HC 

design with gritted teeth.  A grooved cam would provide 
the EoT displacement, with a month disc and a day sector at 
32mm radius for longer day intervals and more precise reg-
istration. This simplification provided more space for the 
output and longitude scales, with the radius increased from 
13 to 18 mm. In isolation, the Gibbs month plate and single 
31 day scale system was always much cheaper and simpler 
to manufacture than Pilkington’s two scale method which 
involved dividing 24 months into days in a very compli-
cated way. In addition, by then P&G as a company under-
stood the problems of the EoT cam. They had struggled 
initially to perfect the profile; they had recognised the re-
quirement of synchronising the cam displacements with the 
month sensing during manufacture and they understood the 
EoT zero offset caused by initial manufacturing tolerances 
and subsequent wear. However, the cam would have had to 
be re-calculated to suit the geometry defined by the new 
linkages as the known HC cam could not just be scaled 
down and used in the new device.    

Version 2 
The version 2 is shown in Fig. 27. In this concentric ar-
rangement the month annulus (B) moves on circumferential 
bearings retained by the fixed central disc (A) that carries 
the pointer and the output and longitude scales. The day 
sector (H) is fixed to the outer body: comparison of Figs. 25 
and 27 shows how the space was gained by choosing the 
cam method for EoT rather than the unequal scales method. 
The underside of the month annulus carries the cam groove 
either machined or cast into it, following the HC design 
exactly.  Fig. 28 shows the inside with the centre disc (A) 
removed. The small forked crank receives the pointer screw 
at the boss C - this fork is not attached to the lower triangu-
lar plate D, it simply engages with a peg E fixed to the 

Fig. 27.  Front view of version 2 of the instrument as drawn 
in the patent. This EoT system with a month plate, cam and 
single day sector is borrowed directly from the Helio-
Chronometer. The month plate B is movable. The algebraic 
sum is indicated by the pointer on the Fast/Slow minute 
scale. ‘Fast’ means clock is fast relative to sundial. 

Fig. 28.  Version 2 with the fixed disc removed. The small 
forked crank is not attached to plate D, it is retained by the 
pointer shaft screwed into the boss at A. Peg E communi-
cates the motion of plate D to the fork. 
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plate. Fig. 29 shows the inside of the device with the month 
plate removed but the image of the cam groove is retained 
for explanation. Plate D is pivoted at F on a peg that is 
screwed into the stationary backplate of the device. G is the 
cam follower peg that faces upwards and this will run in the 
cam groove when the month plate is reassembled. Plate D 
will pivot in sympathy with EoT and the resultant swing of 
peg E will be picked up by the slotted fork in Fig. 28, which 
will cause the pointer to move on the output scale. The lon-
gitude input to the sum is achieved in a similar manner to 
V1 by loosening the thumb screw on the pointer centre and 
offsetting the pointer from zero in the appropriate direction. 
The geometry of the linkages magnifies the EoT displace-
ment arc by about a factor of 3 and this allows the output 
scale (at only 18mm radius) to be somewhat more precise 
and user-friendly than in V1. 

The Patent 

Did Gibbs co-operate on this development? Sadly the evi-
dence says he did not because once again3 he wrote on his 
copy of the patent “The second attempt at escaping pay-
ment of royalties to GJG!”  Pilkington may have been devi-
ous: he fully described V1 in the patent in detail as if it was 
the preferred implementation but then casually described 
V2 as a ‘modification’ or possible alternative implementa-
tion, as designers often do in patents to protect and cover all 
possible options. This might just have deflected the atten-
tion of the patent assessor. One would need a better under-
standing of patent infringement criteria but the clue might 
lie in the claimed purpose of the invention. The Helio-
Chronometer patent3 describes a radically new sundial that 
will automatically indicate mean time, whereas the Equa-
tion Table patent5 describes an ancillary device to comple-

ment all sundials of the ‘old type’ so that a user can calcu-
late mean time.  

Closing Remarks 

Probably only version 2 was manufactured for the reasons 
given. But the accuracy of such a physically small instru-
ment must be in question since the core has the elements of 
the HC EoT system, but at a fractional size. Unfortunately 
we do not have an actual instrument for analysis. In any 
case the Helio-Chronometer has inherent limitations exac-
erbated by size and space as we have discussed earlier in 
this series. As quantity production products, the HC and SH 
were made to a cost determined by raw material prices and 
common lathe capacity and this determined their basic size 
of about 9 inches diameter. Both instruments should be 
bigger not smaller to provide more precision and resolution 
in the scales, and more space to accommodate a larger cam 
to make it less sensitive to profile discrepancies and wear. 
The Sol needs a much larger circumference to do justice to 
the unequal scales and the one minute divisions of the out-
put scale. In the case of the Mechanical Equation Table 
both versions are feasible designs but at 3.5 inches they are 
not very practical. 

Version 2 of this little instrument in gunmetal went on sale 
at 15 shillings in spring 1914, a time that did not bode well 
for the launch of non essential products although Pilkington 
would not have known this. Being able to adjust the indi-
cated time of an old sundial to give mean time would have 
diminishing appeal despite the advertising case made by 
P&G quoted above. As August approached and the ‘hustle 
and bustle’ developed into the madness of world war, very 
few people in the world would pay any serious attention to 
sundials of any type for the next 60 years, until education, 
curiosity, affluence and leisure led to the advent of the vari-
ous European sundial societies and the growing realisation 
that there is much more to Time than the frantic vibrations 
of a tiny crystal.  
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Fig. 29.  Version 2 with the month disc removed, but show-
ing an image of the cam groove CX from the underside of 
the month disc. D is pivoted to the back plate at F, G runs 
in the cam groove, peg E copies the motion of the forked 
crank.  
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Frank Cousins, in his well-known book on sundials1, in-
cludes explanatory diagrams showing how the equiangular 
equatorial dial may be projected upon other planes. This 
forms the basis of a much-used graphical method for de-
lineating sundials at a given location, and Figure 1 illus-
trates the resulting pattern for a direct south vertical dial at 
a latitude of 52° N. Unusually, this is drawn to include the 
night hours for reasons that will be apparent later. 

It will be seen that the hour angles are unequal, being wid-
est around 6 am and 6 pm and then bunching-up around 12 
noon and 12 midnight. The angular velocity of the shadow 
of a matching gnomon must therefore be at a maximum or 
minimum at these times, diminishing from 6am to 12 noon 
and then increasing from 12 noon to 6pm. 

Although sundials may be perfectly well drawn by graphi-
cal techniques, there are occasions when alternative meth-
ods give greater accuracy, permit derivation of further data, 
or suggest new applications. Thus, Robert Hooke showed 
that the mechanical rotating joint now commonly associated 
with his name produced a cyclic variable motion of its out-
put shaft that could be arranged to match the motion of a 
shadow over a sundial. Such a ‘Hooke’s joint’ could there-

fore be used to delineate dials, or be driven by a 24h clock 
movement to move a pointer over a dial graduated in the 
manner of Figure 1 to give a ‘sundial-clock’.2 

The Poncelet Equation 
Two ordinary joints may be coupled together to give a 
‘double Hooke’s joint’ and, in appropriate relative posi-
tions, will annul the varying output velocity of the single 
joint. This ‘constant velocity’ arrangement constitutes a 
vital part of the transmission of most automobiles, so has 
stimulated considerable theoretical analysis by engineers.3 
A pioneer in this field was J.V. Poncelet, who in 1836 de-
rived the equation of motion of the single Hooke’s joint to 
be: 

        
where  a =  angular rotation of the input shaft,  
            b  =     "            "        "   "  output shaft and    
            g =   angle of inclination (‘articulation’) between the 

shafts. 

The zero of rotation conventionally adopted by engineers is 
‘top dead centre’, where the radius vector of a rotating com-
ponent points vertically upwards. (This dates back to steam 
engine days.) On a sundial this corresponds to the Sun at 12 
noon on the meridian. Poncelet’s equation therefore also 
quantifies the direct south vertical sundial at a latitude g, or 
a horizontal dial where this is the co-latitude. The former 
will be understood in the following discussion. 

Calibration of Sundials 
Application of Equation 1 enables hour angles to be calcu-
lated exactly for any given location, although in the absence 
of a vernier protractor this is of doubtful advantage when 
laying-out practical dials. It does, however, enable a num-
ber of other properties of the moving shadow to be exam-
ined. A mid-England latitude of 52° N will be employed in 
the subsequent examples. Graph I in Fig. 2 shows how the 
hour angles b for this vertical dial vary with a, oscillating 
about the sloping dashed straight line representing the equi-
angular equatorial dial.  Note how: 

i) b = a at 0°, 90°, 180°, 270°  . . . .  i.e. every 90°, 

ii) a exceeds b from 0 – 90°, whereas b exceeds a from 
90 – 180°. 

tan tan cosb a g=

HOUR ANGLE, VELOCITY AND ACCELERATION OF THE 

SHADOW MOVING OVER A SUNDIAL 

ALLAN MILLS  

Fig. 1.  The complete pattern for a direct south vertical dial 
at a latitude of 52°  N.  

(1) 
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Difference between α and ß 
(a – b) represents the disparity between the hour lines on 
our 52° N vertical dial and corresponding 15° markings. 
This quantity is plotted as graph II in Fig. 2.  It will be ob-
served that: 

i)   (a – b)  is zero at 0°, 90°,  180°   . . . .  i.e. every 90°. 

ii)  The curves between these values are not symmetri-
cal, the difference between a and b reaching a 
maximum at about 50° and 130°.  (Also around 
230°  and 270° in the complete 360°  cycle.)  

iii)  It may also be shown that both amplitude and de-
gree of asymmetry increase with g. 

Angular Velocity ω 
This is represented by the slope of graph I at any point. 
Quantitative values are best found by differentiating the 

terms in the Poncelet equation.3,4 In a Hooke’s joint with 
input velocity ω1  =  da/dt, and output velocity   
ω2   =  db/dt, this procedure gives:      

  
In a sundial, with the Sun moving clockwise uniformly 
around the polar axis, ω1 equals 15° per hour, so that: 

                  
This gives graph III in Fig. 2. In particular, the above ex-
pression goes through minima and maxima given by:  

ωmin   =   15¥cos g  at a = 0° , 180° . . .. (i.e. every 180°) 

           =  9.2°  per hour at noon and midnight. 

ωmax  =  15/cos g  at a =  90°,  270° . . .  (i.e. every 180°) 

         =   24.3o per hour at 6am and 6pm 

From the graph, 15° per hour is registered instantaneously 
between these points when a approximates 50° and 130° at 
a latitude of 52°.  These points of equality ae  are found 
more accurately4  by putting ω1 = ω2  in the equation above, 
from  which  ae =  cot-1√cos g  at angles  less  than  90° and  
tan-1√cosg at greater than 90°. At  latitude 52° this gives 
angles of  51.9° and 128.1°.  (The near equality with the 
latitude does not occur elsewhere.) 

Angular Acceleration  Δ 
This is given by the second derivative of b with respect to 
time, and may be written:3 

  
However, before applying this equation note must be taken 
of the fact that trigonometric functions are fundamentally 
based on the radian system of angle measurement which, 
being a ratio, is independent of the units chosen.5 In this 
system 2p radians are equivalent to 360° so 1° = 0.174 rad 
and 1 radian = 57.3°. Thus with w=15°/hr (0.262 radian/hr), 
w2 = 0.068 rad/hr/hr and eqn 4 eventually becomes (for g
=52°): 

              
This is plotted as graph IV in Fig. 2. It may be seen that the 
acceleration of the shadow is instantaneously zero at noon, 
but then rises to a maximum of 4.8 degrees/hr/hr at 65° 
(4:20pm). It then diminishes to another instantaneous zero 
at 6pm. 

Maximum Articulation of a Hooke’s Joint 
Geometry would prevent a simple Hooke’s joint driving 
through 90°, but mechanical limitations come into play well 
before that point. The maximum practical articulation angle 
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of a single joint is around 60°, for above this the stirrup of 
one component tends to strike the shaft of the other. A dou-
ble joint is still limited to this angle within either compo-
nent, so the best it can do is an unhappy 120° between the 
shafts. Around 90–100° (45–50° at each end) is more prac-
ticable. 

Summary 
The equation of motion of Hooke’s joint may be applied to 
give hour angle, angular velocity and acceleration of the 
shadow over a sundial. It may be shown that for dials at a 
latitude of 52° we have: 
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OBITUARY 

Edward Rankine Martin   1925  -  2007 

Edward Martin, who died in 
February this year, was the founder 
of the Mass Dial Group within the 
Society. He was a true pioneer in 
that he saw the opportunity to collect 
all information about the dials into 
one place where previously it had 
been scattered in county-based 
publications. Additionally, he had 
the vision to see that the information 
could be stored on computer so that 
it would be readily accessible to all 
for research and record purposes. 

Edward was born in Aberdeen and 
went to Oundle School, and then on 
to Cambridge, studying Physics and 
Chemistry. The outbreak of the War in 1939 resulted in 
him volunteering for the RAF before graduating and he 
worked in the Meteorology Service throughout.  After the 
War he entered industry and was responsible for 
developing plastic moulding techniques and machinery, 
becoming Technical Director and writing standard works 
on the subject. 

On retirement he devoted his time to mass and Saxon dials 
with the inevitable accompanying study of church 
architecture and history. Using his enthusiasm for 
caravanning, he actively recorded dials all around the 
country and on the formation of the Society in 1989, 

joined it and took the lead in 
setting up a Mass Dial Group, 
with a small but devoted 
following. His conscientious 
replies to all correspondence 
resulted in the countrywide 
recording of the dials, now with 
photographs and the prospect of a 
National Register. 

Edward’s vision in this matter 
should not be under-estimated. 
His proposal to write a program 
to store dial records and provide a 
picture was realised with help 
from his son and over a thousand 
dials were entered. This truly 

original work has been passed into the present Register 
and Edward was able to see the first counties entered and 
printed – one page per dial and colour pictures. As ever, 
he was supportive of the efforts of others who were able 
to carry on this work when illness and family cares 
prevented him from being active himself. 

He married Ursilla in 1947 and there were three children: 
Mary, Frances and Andrew. I give thanks to Andrew for 
his recent help. John Lester attended the funeral on behalf 
of the Society; it is hoped that Edward’s legacy may be 
marked in some way by the Society. 

A.O.Wood  

  Vertical S 
dial 

Horiz. dial 

Max angular velocity in °/hr  
(at 6am and 6pm) 

24.3 19.0 

Min angular velocity in °/hr  
(at noon and midnight) 

9.2 11.8 

Points where shadow moves 
at 15°/hr. 

51.9°; 
128.1° 

41.6°; 
138.4° 
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The picture (right) 
shows my recently 
acquired noon cannon 
being fired for the sixth 
time at the recent BSS 
conference at Fitzwilliam 
College, Cambridge.  
The noon cannon is 
oriented to true North 
with the aid of the small 
sundial at the right hand 
side of the picture.  The 
sun’s rays are focused 
by the magnifying glass, 
which is adjustable so 
that the focused spot of 
light is directed exactly 
onto the touchhole of 
the cannon. 

Nowadays, one is not 
allowed to buy ‘black 
powder’ (gunpowder) 
unless one has obtained a 
special licence for it, but 
there is a black powder 
substitute called Pyrobex, 

which will work equally well.  
While this does not require a 
licence, one may have to go to 
Bisley to get it.  And then it is 
recommended that you keep it 
in a box made of wood and 2 
inches thick! 

To prepare for a firing at noon, 
the sundial is first lined up to 
true north, which can be done 
the day before.  The cannon is 

filled to about half its length with 
explosive, and a small piece of 
wadding (such as a twist of tissue 
paper) is rammed in after it to 
ensure a good bang.  To ensure a 

Noon Cannons – A Sundial Conceit 
 

Piers Nicholson 

successful firing, I also 
put a little of the 
explosive powder in the 
dimple surrounding the 
touchhole.  The smoke 
in the picture is from 
this explosive igniting; 
it is followed very 
quickly by a flash, and 
then more smoke from 
the mouth of the 
cannon. 

As a method of 
marking noon, it does 
not offer great 
accuracy, and it does 
of course require 

considerable individual 
preparation for each occasion.  
However, it is very much more 
fun than using an alarm clock.   

My noon cannon was made by F. 
Barker and Son of London for the 
American firm of Abercrombie 
and Fitch of New York, and the 

gnomon is set to an angle of 40° 
showing that it was intended for 
the American market.  
Confimation is given in tiny 
mirror-writing hidden underneath 
the gnomon. The dial is mounted 
on three pad feet and measures 
24.8cm in diameter.  Originally 
they were supplied in plush lined 
carrying case and examples with 
the case do occasionally come up 
for auction (for example, at 
Christies on 21 June 1990). 

The sundial is set in a compass 
rose, and then two scrolls 
enclosing the motto 

“The hours unless the hour be 
bright 

It is not mine to mark 
I am the prophet of the light 
Dumb when the hour is dark” 

There is also an elaborate table of 
Equation of Time corrections 
round half the circumference of 
the instrument, centred on the 
noon cannon. 
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Noon cannons are still fired in some 
parts of the world, though not in the 
now-democratic Kuching.  The 
picture shows the noon cannon 
being fired in Halifax, Nova Scotia, 
where the locals delight in the 
surprised reactions of the tourist to 
the loud bang echoing over the 
downtown area.  Nearer home, 
there is also a noon gun fired every 
day in Edinburgh. 

Author’s address: 
9 Lynwood Ave 
Epsom, Surrey 

KT7 4LQ 

sundials@pobox292.demon.co.uk 

A few noon cannons dating from the 
mid-17th century are known.  These are 
typically mounted on a marble base, like 
the one below by Rousseau, now in the 
collection of C. St. J. H. Daniel. 

The 18th century appears to have been 
the heyday of the noon cannon. Since 
then, demand for noon cannons seems 
to have had a marked decline.  There 
does not seem much possibility of 
reviving this innocent diversion.  In 
England, any firearm however small has 
to be sent for proofing to the Worshipful 
Company of Gunmakers in the City of 
London, and there are severe 
restrictions on offering new noon 
cannons for commercial sale.  One 

purpose-made example is 
the noon cannon and 
armillary sphere made in 
1968 by the workshops of 
HMS Excellent, Whale 
Island, Portsmouth (SRN 
4350).  It is a memorial to 
Baron Chatfield (1873-
1967) and features a lens 
which swings against a 
date scale. 

There are also some 
examples of modern noon 
cannons in other countries, 
such as this interesting 
example (right) made by 
the commercial dialmaker 
Malcolm Barnfield in 
Johannesburg, South 
Africa 
(www.sundials.co.za) for 
Ms Janie Wells of Fairview 
of Tennessee, USA. 

I have always been 
fascinated by noon 
cannons, ever since I read 
about the romantic first 
‘White Rajah’ of Sarawak 

who defeated the rebel uncle 
of the Sultan of Brunei with 
the aid of the single cannon 
mounted in the bows of his 
yacht, the ‘Royalist’, and was 
rewarded with the gift of the 
whole of Sarawak.  In his 
capital, Kuching, a cannon 
was fired every day at noon, 
ostensibly so that people 
could set their watches, 
though it probably also 
served to remind people how 
they had come under the rule 
of a benevolent line of white 
Rajahs.   
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Note: The numbering of figures and references in this and 
subsequent parts of the series continues in sequence from 
Part 1. 

Having explained the principles of the standard 
Planispheric astrolabe and the method of use to determine 
time, we can proceed to consider some of the noticeable 
variations of designs in instruments originating in different 
cultures and areas of the world. The scales appearing on 
both the front and the back also reflect these different 
origins. 

Part 1 used illustrations of three European, or Western, 
astrolabes. In this part I shall consider the European 
instrument in a little more detail with respect to its general 
features and the main scales likely to be found on it. 

CHARACTERISTICS AND SCALES OF EUROPEAN 
ASTROLABES 
The most immediate and noticeable characteristic of 
Western instruments is the use of the Latin script and 
numerals. The earlier engravings can be difficult to read 
due to the type of lettering, for example Lombardic evident 
in Fig. 1 and gothic black letter fonts, Fig. 7, (similar to that 
which will be familiar to anyone who was taught German 
well into the 20th century). The early European notation for 
numerals is shown in Appendix XIX of reference 1 and is 

commonly found until the late 14th century, also Fig. 7, 
after which our familiar numerals predominate. Whatever 
their style, the lettering and numerals are, however, clearly 
distinguishable from those found on non-European 
instruments. Fig. 7 is unsigned but probably of English 
make and is of the style sometimes referred to as 
‘Chaucerian’, being similar to that described in Chaucer’s 
famous treatise.2 

The throne, the piece connecting the suspension ring and 
shackle, or swivel, to the circular limb is usually fairly 
small and simple with only plain decoration. Some Flemish 
astrolabes from the 16th century Louvain school of 
instrument making include a pair of reclining satyrs, Fig. 8, 
which are a feature of a small group of makers from this 
source. This instrument, by Arsenius and dated 1565, also 
shows the throne is made separately and then screwed to 
the limb, a less usual arrangement. On Western instruments 
the throne may also incorporate a small magnetic compass, 
as in the example in Fig. 6. Such compasses may have the 
magnetic deviation marked which can be an aid to dating 
the instrument. 

There is no ‘standard’ strapwork of the rete, the design 
being at the whim of the individual maker, perhaps after 
some discussion with a patron commissioning the 
instrument. Early retes tend to be relatively simple but it 
has been said that ‘Mercator [1512-1594 and best known 

ASTROLABES 
Part 2 – European Astrolabes 

 
TONY ASHMORE 

Fig. 7.  14th century European astrolabe with gothic 
lettering and numerals. Fig. 8.  Flemish astrolabe, 1565. 
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for his cartographic work] was responsible for turning the 
rete into an art form by his use of a delicate structure of 
interwoven strapwork’.3 An exception to the individualism 
in rete design is again to be found in a group of Flemish 
makers based in Louvain, not necessarily using satyrs in the 
throne, who tended to use a distinctive common pattern 
based on its characteristic tulip-shaped motive, Fig. 6, but 
with detail variations involving ornamentation, strapwork 
thickness and complexity included in the loops. Compare 
Figs. 6 and 8. 

The number of stars included in retes varies from less than 
twenty to more than fifty. In general, the larger the 
astrolabe the greater the number of star pointers. There are 
exceptions, however, the most notable probably a 2 foot 
diameter instrument by Humphrey Cole, dated 1575, in the 
Physics department of St Andrews University and which 
has no star pointers on the rete! European instruments use 
flame-shaped pointers to show the star positions. The 
number of pointers sometimes exceeds the number of stars. 
For example, it is not unusual to find seven pointers against 
the name Ursa Major (the Plough or Great Bear), one for 
each of the seven stars in the constellation. An interesting 
variation on the use of flame-shaped pointers is the use of 
zoomorphic characters, Fig. 7, the head of a dog to show 
the position of Sirius, the Dog Star, (at the bottom), a bird 
for Vega (near the zenith) and a dragon’s head with its 
tongue indicating Antares (top right).4 

SCALES ON THE BACK 
Zodiac/Calendar: In Part 1 these scales were used to 
determine the sun’s position in the ecliptic in order to find 
the time. In earlier astrolabes the zodiac and calendar scales 
were concentric, as in Fig. 5. The zodiac scale is divided 
into 360 parts, 12 signs of the zodiac of 30 ‘days’ each, a 
relatively easy task and, hence, also used to divide the 
ecliptic circle of the rete. The calendar scale has to be 
divided into 365 parts which are not exactly equal due to 
the eccentricity of the earth’s orbit. The period between the 
vernal and autumnal equinoxes is longer than between the 
autumnal and vernal ones by nearly 8 days, Ref. 1, 
Appendix 1, column 7. Thus the arc for spring and summer 
needs to be longer than that of autumn and winter. These 
uneven 365 graduations give rise to alignment 
complications with the evenly divided 360 zodiac scale 
graduations. 

With the increasing knowledge and understanding of 
mathematics, astronomy and ‘science’ from the 15th century 
onwards, a method of positioning a circular, evenly divided 
calendar scale eccentrically inside the evenly divided 
zodiac scale was devised which removed the alignment 
complications, Fig. 9. It will be noticed the two circles are 
very close together in early July and furthest apart in early 
January, the centre of the calendar circle being offset from 
the centre of the instrument towards the 11 o’clock 
direction, to use the 21st century jargon. This offset 
direction is because the plane of the earth’s tilted axis is not 

parallel to the plane of the major axis of the earth’s orbit, 
technically referred to as the Line of the Apsides. This 
means the aphelion and perihelion, the furthest and closest 
positions of the earth to the sun, occur approximately 13 
days after the solstices. It is for this reason that sunrise 
continues to occur later for these few days after the winter 
solstice although the day length itself increases from the 
solstice, see Appendix XII of Reference 1. [Note: There is a 
typographical error in this appendix – 4 June should read 4 
July and the corresponding declinations, if needed, are 
found in Appendix XIV.] 

Shadow Square: This is found on the back of the great 
majority of ordinary astrolabes, normally suspended from 
the horizontal diameter. For convenience, the basic square 
is usually duplicated either side of the vertical centre line to 
form a rectangle, each part being a mirror image of the 
other, Fig. 9. The horizontal scale of the square/rectangle is 
known as the umbra recta whilst the vertical side is the 
umbra versa. Unlike Fig. 9, these terms are frequently 
engraved along their respective scales. 

The shadow square is essentially a surveying device and 
has no astronomical or time finding function. Each side is 
divided into a number of equal parts, frequently but not 
always 12. It tended to be used to find the height of objects 
using the principle of similar triangles. Fig. 10 illustrates 
this use, the left diagram showing a matchstick man (not as 
good as L.S. Lowry’s men!) finding the height of a tower, 
sighting through the pinhole sights of the alidade, and the 
right sketch an expanded corresponding view of the alidade 
across the shadow square. Triangles ABC and abc are 
similar. If the observer knows, or measures, how far he is 

Fig. 9.  French gothic astrolabe with eccentric calendar 
circle. 
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from the tower, distance CB, this is equivalent to cb – 6 
units - on the umbra recta. The height AC is equivalent to 
ac – 12 units - on the umbra versa. The top of the tower, 
therefore, is twice the distance from C as he is from the 
tower. To the calculated value AC must be added height of 
the instrument centre, CD, to give the true height of the 
tower. For less elevated objects the alidade sight line may 
lie across the umbra versa in which case the umbra recta 
‘units’ would be 12 and the umbra versa less than 12. The 
instrument can also be used horizontally in the manner 
today we might use a theodolite to measure horizontal 
angles. There is a well known drawing in various 
Renaissance works showing the shadow square being used, 
looking downwards, to determine the depth of a well. As 
wells were often narrow but deep, this gives the impression 
of an author looking for a problem to solve. A stone 
lowered on the end of a length of string would seem to be 
both quicker and more accurate. 

Unequal Hours: Unequal hours, sometimes called Planetary 
Hours, are obtained by dividing the period between sunrise 
and sunset into 12 equal parts and similarly dividing the 
period of darkness into 12 equal parts. As the length of 

daylight, and darkness, varies each day throughout the year, 
the length of an unequal hour varies from day to day and 
there is a difference between the lengths of day and night 
unequal hours on the same day, except on the equinoxes. 

Three different methods may be found on astrolabes for the 
determination of unequal hours, although not more than two 
will be found on any one instrument. Fig. 11 is the most 
common on the back of ordinary Western astrolabes and 
normally occupies the space above the shadow square, as 
may be seen in Fig. 9. To use this device the maximum 
altitude of the sun for that day needs to be found. This is 
easily done, on the front of the instrument, by setting the 
sun’s zodiacal position on the rete ecliptic circle onto the 
north-south meridian line and reading off the altitude from 
the almucantar directly under that point on the ecliptic. As 
an example, if the maximum altitude is found to be 54º the 
alidade, on the back, is then set to that altitude on the 
degree scale at the edge of the instrument, Fig. 11. As the 
maximum altitude occurs at solar noon this is the same as 
the sixth unequal hour, halfway through the daylight period. 
The alidade will cross the 6 arc at the point A. This 
position, A, on the alidade is noted, or marked if the alidade 
does not have a suitable engraving at that point, Fig.11 
lower diagram. At any time of the day the sun’s altitude is 
measured and the alidade moved to that altitude, say 26½º. 
Where the noted, or marked, point on the alidade lies in the 
numbered arcs, point A1, gives the unequal hour at that 
time, 2¼ hours after sunrise as drawn. Knowing whether 
the time is before or after noon the alidade is set to the right 
or left of the meridian line, giving the unequal hour less 
than or greater than 6. Since the design is symmetrical, only 
one half of the figure needs to be drawn, the numbered arcs 
being engraved with the two numbers corresponding to the 
same arc in the complete figure – 1 and 11, 2 and 10, ……, 
5 and 7, 6. Since the use of this design only depends on 
knowing the sun’s noon altitude it can be used in any 
latitude. 

The centre of the circle may be filled by such devices as a 
coat of arms, tables of astrological data, solar cycle and so 
on. 

The second design, Fig. 12, which can be used to convert 
between equal and unequal hours, is also found on the back 

Fig.10.  Height finding using the shadow square.  

Fig.11.  Common form of diagram to determine unequal 
hours. 

Fig. 12.  Diagram for conversion between equal and 
unequal hours. 
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of the instrument and in the upper half instead of the 
circular scale described above. This is less frequently seen 
and utilises knowing the times of sunrise and sunset, on the 
day, instead of the noon altitude of the sun. These two times 
are found by placing the ecliptic zodiacal date on the 
horizon arc and reading the equal hour from the rule 
position on the limb. Like the circular design, this is also 
useable for any latitude. 

A scale of equal hours, in conventional Arabic numerals, is 
marked along the horizontal diameter with noon at the 
centre and each half divided equally from 1 to 12. To the 
left of noon the hours represent midnight to noon, and so 
include the hour of sunrise, whilst to the right of noon are 
represented the hours from noon to midnight and include 
sunset. The outer arc shows the unequal hours, starting at 
zero on the horizontal line and inscribed 1 to 12, usually in 
Roman numerals, at the end of each unequal hour. One 
edge, at least, of the alidade is engraved with lines and 
numbers from 1 to 9 or 10 corresponding to the equal hours 
reading from sunrise. They stop short of 12 due to the 
central boss of the alidade. 

As an example of the use of this design, if the sunrise is at 
6.30 am, point B, this position on the alidade will follow 
the dashed line as the alidade is rotated. If the clock time 
found on the front of the instrument in the usual way is, 
say, 10am, the alidade is moved until the sunrise mark 
coincides with the 10am equal hour line, point C. The end 
of the alidade then indicates the unequal hour, 
approximately 3:50, point D. Similarly for times after noon, 
point C will be to the right of the noon line, at C1 for 4pm 
sun time and the unequal hour will be 10:10, point D1. 

The process can easily be reversed to find the equal hour 
equivalent to a given unequal hour. Like the circular design 
described earlier this device is symmetrical about the noon 
line and so only half needs to be drawn, if a quadrant on the 

back is desired for some other purpose, with the unequal 
hours having two numbers – I and XI, II and X, ……, V 
and VII.  

The shadow square normally being immediately under the 
horizontal diameter, there is not space to engrave the 
numbers etc, that I have shown, for clarity, in that position. 
The equal hour numbers are engraved in the body of the 
design across the actual hour lines and HORÆ ÆQVALES 
engraved across the pattern of lines to make it clear that 
these are the equal hours. Horae ante meridiem and Horae 
post meridiem may also be included to clarify for the user 
the before and after noon periods. 

The third provision for finding an unequal hour is to be 
found on the latitude plates. As the plate is engraved for a 
specific latitude, the unequal hour measurement is only 
applicable to that latitude. Fig. 13 is a view of the plate for 
latitude 51º 34' (inscribed in the centre just under the 
horizon line) that is shown under the rete in Fig. 7. The 
unequal hour lines are the 11 curved lines drawn between 
the Tropic of Cancer and the Tropic of Capricorn circles 
and labelled with the early European number symbols. 
These numbers are inscribed in the middle of each hour but 
refer to the lines on their left, the end of that hour. In this 
figure the crepuscular line, the one with dots on it (see Part 
1 of this series) crosses the engraved equatorial circle just 
before the end of the second unequal hour and just after the 
beginning of the eleventh hour. To find the unequal hour at 
night, the sun having set, the rete is positioned in the usual 
way for time finding by placing the observed star pointer on 
the almucantar of the measured altitude. The unequal hour 
for this instant is then read from the position of the zodiacal 
‘date’ among the unequal hour lines. Using Fig. 7, if the 
zodiacal date was 10 Gemini (a little to the left of the 
vertical meridian line) the unequal hour would be at the 
start of the ninth hour. The clock or equal hour would be 
1:20am, given by placing the rule over 10 Gemini and 
reading the time on the outer scale – a little behind the 
dog’s head. During the day with the sun, and therefore the 
zodiacal date above the horizon, the same process applies 
except that the point on the ecliptic opposite the date, in this 
case 11 Sagittarius, which will be below the horizon, is 
used to give the unequal hour. Note that 10 Gemini is about 
the end of May, when the day is long, 11 Sagittarius is near 
the outer edge of the plate and will traverse the unequal 
hour lines nearest their widest spacing. By definition, this 
long day from just after 4 am to just before 8pm is still 
divided into only 12 parts giving long unequal hours. 

Astrologers divide the sky into ‘Sky Houses’ and these are 
often drawn on the plates. Below the horizon the lines for 
these are rather similar to the unequal hour lines but should 
not be confused with them. As explained above there are 11 
unequal hour lines (the horizon being the twelfth) 
numbered with Arabic numerals and which stop at the 
Tropic of Cancer circle. There are only 6 house lines below 
the horizon, numbered with Roman numerals, and they do 

Fig. 13.  Plate of Fig. 7 with unequal hour lines. 
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not stop at the circle for Cancer but continue through a 
common point in the middle of the horizon and across the 
grid of almucantars and, if plotted, the azimuth lines. These 
‘house lines’ are not included in Figs. 7 and 13. 
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To be continued  

READERS’ LETTERS 
Rowhedge Dial 
I was surprised to see Ian Butson’s Photographic 
Competition entry (bottom left, p.58 of the June Bulletin) as 
it is a dial which I made over 30 years ago!  It was made in 
response to a request from something to mark the opening 
of the new quay at Rowhenge, Essex, on 11 September 
1976.  It was ‘unveiled’ by the Olympic gold medal sailor 
Reg White who arrived by smack from Brightlingsea to the 
sound of a brass band. The dial (SRN 0311), which is of 
stainless steel and features adjustment for summer time, 
seems to have worn well. 

Robert Scott Simon 
Woodbridge, Suffolk  

Gravestone Dial 
No doubt many readers will be familiar with the ITV series 
‘Diamond Geezer’ featuring David Jason. For those who 
are not, and for the record, an incident occurred at the close 
of the episode screened on Monday April 16th titled ‘Old 
Gold’ with a more than ordinary gnomonic interest. Our 
hero plays the part of a loveable rogue, an arch-thief (hence 
the title of the series). In this episode he sets out to recover 
gold bullion, whose whereabouts are revealed in a code 
hidden in a painting in the Russian Embassy. After many 
adventures and vicissitudes the trail leads to Lime Street 
cemetery and the tomb/mausoleum of one Ilianic Koylekov. 
Above the memorial inscription there is a vertical sundial 
with a curved gnomon the like of which I have never seen, 
nor am I ever likely to see. What follows clearly indicates 

I. 
B

ut
so

n 

that the script writer knows little or nothing about sundials, 
and probably assumed that they record the hours as on a 
clock-face. David Jason grasps this gnomon, which turns 
out to be pivoted at its root, and turns it successively to the 
three numbers (that is hour lines) on the dial face, namely 
12, 6 and 9:30. After an anxious pause, behold a stone 
panel on the face of the tomb slides open to reveal gold bars 
to the value of £6,000,000! The choice of numbers for his 
code reveals the author’s ignorance of gnomonics. On a 
typical sundial the gnomon is already aligned on 12 o’clock 
(noon) and would not need to be twisted into place, and 
there would be a choice of two 6 o’clock positions. 
Altogether, this must be the most bizarre application of 
gnomonics in the history of literature, but very appealing 
and original nevertheless. In parenthesis, there is no reason 
why a gnomon could not be made to pivot and to align 
itself with a numeric code: one needs only to be careful in 
the choice of one's numbers! 

John Wall 
North Yorkshire 

Brass or Bronze? 
I found the article ‘Brass or Bronze?’  in Bulletin 19(ii) 
very interesting particularly as such studies might lead to 
data that could corroborate a speculative sundial date. 
Reflecting that the information that turns a sheet of metal 
into a usable sundial and identifies it is often held tenuously 
in the first half millimetre of the skin, then these 
metallurgical techniques will be very important.  

1) In analysing the dial plate of the 1685 Lyme horizontal 
equinoctial dial, I was able to discern the last two digits of 
the date (as described in detail in my article in Bulletin 17
(iv)pp.160-167). The plate is very heavily corroded but 
there was a legacy of the engraving actually in the blue 
green patina itself. I described a green sea in which there 
are many black islands, which may indicate the original 
level of the metal, a description that applies to many dial 
plates. It seems that the trench of the original engraved cut 
is somehow maintained or memorised entirely in the patina 

continued on page 123 
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In Bulletin 18(iv) p.176 (‘ Poetic Interlude’, December 2006), 
Tony Wood described a sundial pedestal at Farringford.  In 
the Readers’ Letters of the following issue, Tony Ashmore 
suggested an explanation for the image on one side of the 
pedestal.  Now, Elizabeth Hutchings gives the definitive 
story. Elizabeth is a member of the Farringford Tennyson 
Literary & Arts Society and author of Discovering the Sculp-

tures of George Frederick Watts O.M., R.A. and Busts & 

Titbits - Woolner Busts & Freshwater Fragments. Ed. 

Farringford in Freshwater at the western end of the Isle of 
Wight was the home of Queen Victoria’s Poet Laureate 
Alfred, Lord Tennyson from 1853 until his death in 1892. 
He and his wife Emily had two sons, Hallam named after 
Tennyson’s much loved friend Arthur Henry Hallam, and 
Lionel who died at the age of 32. Tennyson’s long poem In 
Memoriam AHH was written over several years following 
the tragic early death of Arthur who had been engaged to 
Alfred’s sister Emily. It included (canto cxvii) the poem 
The Sundial. One of the Tennysons’ many friends was the 
painter and sculptor G.F. Watts. He married Mary Fraser 
Tytler, an accomplished artist from the shores of Loch Lo-
mond and they made their home at Kensington, with a 
country home at Compton, near Guildford where you can 
now find the famous Watts Gallery.1 There they found a 
rich seam of clay and Mary taught the villagers the art of 
pottery. Her garden ornaments were much sought after and 
included sundials. An example currently in the Watts Gal-
lery is shown in Fig. 1. 

               The Sundial 
O days and hours, your work is this 
To hold me from my proper place, 
A little while from his embrace, 
For fuller gain of after bliss:  

That out of distance might ensue 
Desire of nearness doubly sweet; 
And unto meeting when we meet, 
Delight a hundredfold accrue,  

For every grain of sand that runs,  
And every span of shade that steals, 
And every kiss of toothéd wheels, 
And all the courses of the suns. 

The poem has connections to Shakespeare’s Sonnet 
77,  Thy dial’s shady stealth  and Sonnet 59, Five hundred 
courses of the sun. 

The plate and gnomon are missing though they can be seen 
in Freshwater photogapher Ken Merwood’s 1951 picture of 
the sundial half hidden in a bed of flowers. The pedestal 

ISLE OF WIGHT SUNDIAL MYSTERY SOLVED 
 

ELIZABETH HUTCHINGS 

Fig. 1.  A scaphe dial by Mary Watts currently in the Watts 
Gallery, Compton.  Photo: D. Bateman, with permission.3 

Fig. 2. The Watts’ pedestal in its current location at 
Farringford.  
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was subsequently moved and now stands above a small 
oranmental pool flanked by two conical golden cupressus 
(Fig. 2).   

Some compensation for the missing dial is that a mark can 
clearly be seen in its recess in the pedestal (see Fig. 3) 
which I had thought was that of the mason but Veron-
ica Franklin Gould2 has identified it as Mary’s. She wrote 
to me: “The sundial was clearly designed by Mary Seton 
Watts relating to the memorials and sundials made by her 

potters at Compton. Mary introduced this grey terracotta to 
harmonize with stone architecture, red to accompany brick. 
The style of lettering resembles Mary’s more mature work 
or that of her Compton calligrapher.” I had hoped it was 
made to celebrate the marriage of  Hallam to Audrey Boyle 
in 1884. At first Veronica thought it was probably designed 
by Mary while the Watts were staying at Freshwater in 
1890. But after much discussion between us we think it was 
most likely made after Emily’s death in 1896. Veron-
ica writes: “My feeling is that it is in memory of the poet 
and his wife, with a vision for the future, as it were, through 
Hallam and Audrey.” The poem is obviously a memorial 
but also looks to a future meeting. 

The pedestal is constructed in four separate sections. At the 
top is a capital in two sections. The upper section, in which 
the dial was inset, has a motto on its top surface reading: 
horas non numero nisi se[renas]. This roughly translates as 
‘I can not tell the hours unless there are clear skies’. 

The lower section of the capital has the second two lines of 
the second verse of The Sundial, starting facing north and 
reading anti-clockwise,  and unto meeting - when we meet -
 delight a - hundredfold accrue. 

The upper section of the shaft has a carved figure on each 
of the four faces. They are ALFRED, EMILY, HALLAM 
and AUDREY whose names are at the base of the 
shaft. The lower section of the shaft has the last four lines 
of the poem starting below hundedfold accrue, facing east.  

Thus Alfred holds an hour glass above the line ‘for every 
grain of sand that runs’. Emily holds an upright sundial 
similar to one of Mary’s in the Watts Gallery above the line 
‘and every span of shade that steals’. Then Hallam holds a 
clock above the line ‘and very kiss of toothed wheels’. 
Above the line ‘and all the courses of the suns’ Aud-
rey holds a quill. On the end is a heart-shape with a picture 
of the heavens above a small boat in water with eight tiny 
figures in it. The Flood is featured in nearly all cultures and 
there are always eight survivors, though in the Koran 
Noah’s wife does not survive. 

The best news is that Martin Biesly and Rebecca Fitzgerald, 
the new owners of Farringford, plan to have the sundial 
restored.  

REFERENCE & NOTES 
1.  www.wattsgallery.org.uk 
2. Veronica Franklin Gould, the author of G.F.Watts: The 

Last Great Victorian (Yale University Press 2004), is 
writing the definitive biography of Mary Seton Watts. 

3.  A similar dial, on a matching pedestal, was offered by 
Christies in their ‘Furniture and Decorative Objects’ 
sale, May 2007. 

 Author’s address: 
e.hutchings@talktalk.net  

www.larome.co.uk/ElizabethHutchings 

Fig. 3. The top of the Farringford pedestal showing (right) 
Mary Watts’ sculptor’s mark in the recess.  

Fig. 4. Close-up of the side with Audrey’s likeness 
(described by Tony Wood as ‘something Egyptian’!) 
showing the heart on the end of Audrey’s quill with a boat 
with eight occupants and two suns above it. 

SNIPPET FROM A CHURCH LEAFLET 
 
“Sadly in 1772 the mediaeval churchyard cross was made 
into a sundial – the mason being paid 3 shillings for this 
act of vandalism.” 

But now in 2007, even more sadly, the sundial is no 
longer there and the cut-down cross stands bare among the 
tombstones in the churchyard of St Garmon’s Church in 
Llanarmon in North Wales.  It has disappeared in the last 
twenty years. 

Irene Brightmer 
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STRANGE LONGITUDE 
 

FRANK EVANS 

Over the entrance to the Grammar School in 
Hawkshead, Cumbria, is a dial, SRN 1134 
in our Register. The building, now a 
museum, is famous as the school attended 
by young William Wordsworth. But the 
dial, dated 1845, although old is from well 
after his time. It was first recorded for the 
BSS in 1990 by Robert Sylvester, when it 
was seen to be in poor condition. In 1997 a 
good and faithful restoration was completed 
by Scobie Youngs of Dacre, near Ullswater. 
The dial currently looks very well, although 
the hour lines and equation of time values 
are in blue and rather hard to pick out, in 
contrast to the gold hour numbers. The dial 
plate fills a framed space above the door. It 
declines a little from south but is further 
canted eastwards to show time from five in 
the morning to three in the afternoon. 
Sylvester thought this odd arrangement may 
have been to allow the early hours of the 
school day to be shown. 

At the head of the dial plate, as has now become clear, are 
the inscriptions: 

Lat 54º 22' 40" Decl. 30º 20'. 
Pl. Long. 35º 43' 40" 

At first not all of this could be made out. The cited latitude 
accords well with the location of the dial but the longitude 
was a curiosity and a puzzle which the museum curator, 
when I met him recently, was unable to explain. 
Hawkshead is almost exactly 3º west of Greenwich. 
Furthermore I originally misread Pl as PL. The declination 
was only spotted later on a photograph. 

In an opening enquiry to the Sundial Mailing List on the 
internet I wrote of the dial: “Longitude eastward of 
Greenwich lands us in an unremarkable location in the 
middle of Russia but westward takes us close to Recife, 
formerly Pernambuco, on the eastern tip of Brazil. No 
significant place on the coast there (lighthouse, etc) fits but 
I am wondering if there is or was an observatory in or near 
the middle of the town. And what can the letters PL mean? 
Any suggestions for this strange longitude citing?” 

The communications that followed have been energetic and 
remarkably numerous, with over forty postings. 
Correspondents, many of them well-known names in the 

sundial newsgroup, have 
gnawed at the significance of 
the longitude value but were 
misled by the misreading of 
Pl as PL and by my omission 
in my earlier messages of the 
word “Long” immediately 
following these letters. 
Nevertheless, attempts were 
made to discover a suitable 
location from which the 
longitude measurement may 
have been derived. I, as noted, 
suggested Recife but St. 
Petersburg was more 
plausibly proposed by Tom 
Kreyche, although he had 
reservations about such a 
reference for an English dial 
at that date. 

However, in an early nautical 
publication we find that the 

St. Petersburg Observatory is given as 30º 18' 23" east of 
Greenwich which, making allowance for the 3º further west 
for Hawkshead, still leaves a deficit of over two degrees 
towards the 35º 43' 40" quoted on the dial. In view of the 
precise values on the dial plate such a wide discrepancy 
presents a fatal objection. 

There followed a very neat proposal from Gianni Ferrari. 
He suggested that the supposed longitude was actually the 
polar latitude. This quantity, attractively suggestive of the 
supposed PL of the dial inscription, he proceeded to derive 
and figure from a quantity called the reduced latitude, 
which in turn is related to an earth figure compressed from 
the spherical. The result he obtained, using an appropriate 
compression, was startlingly close to the quoted value of 
35º 43' 40" However, it did not explain the word “Long” in 
the caption, and so again a difficulty remained. 

Eventually, a better photograph communicated by Fer de 
Vries revealed the value heavily shaded by the dial 
framework: Decl. 30º 20'. From this value and the given 
latitude he was able to calculate the style angle, the substyle 
angle and, critically, the hour angle in angular measure. 
Gratifyingly the calculated hour angle of 35.75º was 
encouragingly close to the quoted longitude value, here 
recalculated in decimal degrees, of 35.7277º. In units of 

Fig. 1.  The Hawkshead dial. 
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time the difference was six seconds. As he announced in 
modest triumph in his message to the newsgroup: “Bingo!” 

And indeed we seemed here to have reached a large part of 
the solution. While hour angles are usually expressed in 
units of time here we have an angular hour angle. I 
summarised the results in a message of thanks to 
correspondents when I said: “If the hour angle is presented 
as an angular measure it works out at 35.75º or, in time, 
2hrs 23mins as opposed to the cited longitude of, in time, 
2hrs 22mins 54secs. In other words, at 9:37am the sun will 
be directly over the style and the cited longitude is the hour 
angle. This explanation has the added advantage that no 
geographical longitude is involved; longitude values must 
be rare indeed on dials of 1845.” 

In photographs the line of the gnomon is indeed seen to be 
set at this morning value. Moreover, Robert Sylvester has 
been able to return to a post-restoration photograph of his, 
which was dated and timed, and showed that with due 
allowance for Hawkshead's longitude and the equation of 
time the dial time agreed with GMT to within four minutes, 
confirming that the dial plate was correctly aligned. 

But we still lacked explanation of the letters PL (or P1, as 
on the dial). Frans Maes noted that Waugh uses the symbol 
P in his treatment of declining dials, referring to his 
“computational treatment of the declining dial on p.80 of 
his standard work. The P values for each hour line in table 
10.2 are ‘what Holwell (in Clavis Horologiae, London, 
1712) calls the polar angles’. The polar angle for noon 
equals the so-called difference in longitude DL. Converted 
to time, this is the time of the sub-style line. So here is at 
least a link between P and Long.” 

I have several further comments to hand concerning PL or 
Pl. Firstly, John Davis wrote: “I note that the letters ‘PI’ (as 
well as PII and PW) appear as one of the centres of 
Oughtred’s Horizontal Instrument.  They are actually 
engraved on the instrument made by Elias Allen.” Oughtred 
was of course the famous seventeenth century inventor of 
the double horizontal dial. 

Secondly Gianni Ferrari noted that in The Art of Shadows 
by John Good (London 1731) the author always used the 
quantity ‘Plane’s difference of Longitude’ or ‘Planes 
Longitude’ (Good’s apostrophes are haphazard) to calculate 
a declining sundial. 

We are now getting close to Pl. Finally, Frank King 
pursued Good’s book in more detail and reported: We can 
be certain that John Good used the abbreviation Pl for 
‘Plane’s’ and that ‘Pl Long’ was his abbreviation for ‘The 
Plane’s Longitude’. 

For a vertical dial plate, King noted that this longitude 
refers to the point 90º distant on the earth’s surface at right 

angles to the dial plate. Moved to this point, with its 
orientation preserved, the dial plate would lie horizontally. 
Pl Long is the angle at the pole between the meridian 
passing through this point and the meridian of the dial. 

He too noted a discrepancy between the ‘Pl Long’ quoted 
on the dial and the ‘Pl Long’ derived from the cited latitude 
and declination but the discrepancy is too small to affect the 
argument.  Concurring with Ferrari, King concluded: “It 
seems highly likely that ‘Pl Long’ on the Hawkshead dial is 
the same abbreviation, namely ‘The Plane's Longitude’.” 

And there, at last, we have it, with what we may call the 
gnomon hour angle having the same numerical value as the 
plane’s longitude. The meaning of both ‘Pl Long’ and the 
value it refers to have been found. Remarkably, this whole 
Hawkshead debate, involving a score of knowledgeable 
dialists, was begun, solved and finished in a little over a 
week. We are now able to offer the curator of the 
Hawkshead Grammar School a solution to the enigma of 
the dial. And Frank King concluded that this explanation 
has the added advantage that (contrary to my statement) it 
does involve a geographical longitude. 

He wrote: “The Pl Longitude is the geographical longitude 
where, at 12 noon local sun time, anyone way to the west in 
Hawkshead could see the shadow of the gnomon falling 
along the sub-style of this dial. Thus ‘longitude’ has its 
conventional geographical meaning. 

“Just think, pupils at Hawkshead Grammar School could be 
taken outside for a break and told to watch for when the 
shadow fell along the sub-style. “Look at that, boys”, the 
schoolmaster would say, “It is now 12 noon everywhere 
along the Plane's Longitude”. 

Bingo indeed! 
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A few years ago I travelled to Shetland and stayed at the 
Sumburgh Hotel, at the tip of the southern Mainland of the 
Islands.  When I checked in I noticed a plaque attached to 
the upright part of the registration desk at a level of about 
two feet above the floor.  On closer inspection it appeared – 
of  all things – to be a sundial! Later, the manager was kind 
enough to remove it to a table where it could be seen prop-
erly. 

It was marvellous: a beautifully made brass dial, 13½"  in 
diameter, in excellent condition and showing good detail 
(see Fig. 1).  A brass rubbing, later turned into a drawing 

(Fig. 2), proved most useful for taking measurements.  It 
was then carefully returned to its place, vertical rather than 
horizontal and out of reach of the sun. 

At that time I could find very little of its history.  There was 
a curved wall in the garden where it had originally been 
mounted on a pedestal.  About 30 years previously, the gar-
den had been vandalized and the dial was found on the 
ground some distance away.  The gnomon was never recov-
ered.  Neither the current owner nor anyone in the local 
historical society could provide any further information. 

It was easier to learn about the 
history of the hotel and hence 
the original owner of the dial.  It 
was built in 1867 as a country 
house.  The Laird, John Bruce, 
lived there from 1881 until his 
death in 1904.  During that time, 
in 1890, the dial was con-
structed.  His coat of arms, 
which has as its crest a hand 
holding a heart and includes the 
motto ‘Omna Vincent Amo’, is 
displayed on the building and is 
also engraved on the dial itself 
(Fig. 3). 

I checked the location of the 
hotel using a current Ordnance 
Survey map and, as expected, 
the positions agree exactly with 
a latitude of 59° 52' 10" N.  

Curiously, the longitude is not marked as such but the time 
difference of 00hr 05min 09sec translates to 1° 17' 12" W 
of the Greenwich Prime Meridian.  For a visitor thinking in 
terms of mileage rather than navigational data, that is about 
37 miles west of Greenwich and just 8 miles south of the 
60° N line. 

The dial is a mine of information.  Practically anything you 
might wish to ask is answered.  Three gentlemen are 
named, the first being the aforementioned John Bruce, 
Laird.  Obviously this dial must have been commissioned 
by – or perhaps for – him at this precise location.  The sec-
ond name is that of  “C. Baker. 244 High Holborn, Lon-
don”.  Research reveals the identity of a Charles Baker of 
243 & 244 High Holborn where he worked from 1851 until 

A RARE DIAL IN THE FAR NORTH   
Sumburgh, Shetland Islands 

 
VICKI DE KLEER 

Fig. 1.  Photograph of the Sumburgh dialplate. 

Fig. 2.  Drawing of the Sumburgh dialplate, made from an 
original brass rubbing. 

Fig. 3.  John Bruce’s arms on 
the Sumburgh Hotel. 
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1909 as an optician and scientific instrument maker.1,2  The 
firm is said to have been founded in 1765.  Charles Baker 
sold a wide range of instruments including those for survey-
ing and for surgical and mathematical applications.  Unfor-
tunately, it has not been possible to find out anything about 
the delineator of the dial other than his name, Edward 
Miller Nelson. 

A particularly useful feature is the peripheral calendar in 
which corrections for the longitude (5mins 09secs) have 
been combined with the equation of time, thus simplifying 
the conversion from solar to standard time.  This can be 
most clearly seen in Figs. 2 & 4. 

Engraved in the calendar ring are the unusual instructions 
“AM Sub. 1 min” and “PM Add 1 min”. It is not com-
pletely clear what these additional corrections are for but 
one explanation is that they are an attempt to allow for the 
bias of the viewer’s eye in deciding where the true edge of 
the shadow is.3 

Although at the summer solstice the sun rises at Sumburgh 
at 02:36am and does not set until 21:28pm,4 the hours de-
fined are limited, running only from 04:00 to 20:00. It has 
been suggested5 that, since the dial was made 600 miles to 
the south, proper allowance was not made.  In Fig. 5  I have 
taken the liberty of adding the earlier and later hours just to 
see what they might have looked like, very nearly surround-
ing the dial.  Other than its angle and footprint, we have no 
details of the gnomon design. 

It is regretable that such a fine instrument is no longer faith-
fully recording the hours in its rightful setting and one can 
only hope that it might eventually be restored.  At the time 
of writing it is apparantly the most northerly dial in Great 
Britain recorded in the BSS Register. 
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[The dial described here has several features in common 
with those made and sold by the contemporary firm of F. 
Barker & Son, particularly the decorative engraving and the  
layout of the Equation of Time table.  It is possible either 
that the dial was actually made by F Barker but retailed by 
C. Baker or that both makers used the same pattern books. 
Ed.] 

Fig. 4.  Close-up of the dialplate showing the time 
correction ring, the arrowhead half-hour marks and the 
decorative engraving. Note also the instruction “A.M. Sub. 
1 Min.” on the left. 

Fig. 5.  Expanded diagram showing the coat of arms and 
the calculated positions of the extra hour numerals. 

This cube dial was once at the ruined 
Dryburgh Abbey, near the remains 
of Sir Walter Scott and his wife.  It 
carries his motto Watch Weel as 
well as the arms of the Haliburton 
family (grand-uncle to Scott). The 
dial is believed to date from 1640 
but was knocked over by a falling 
tree in the Victorian era and left 

broken for a considerable 
time. 
 
It was gifted from 
Nenthorn House in 1987 
and is now to be found 
at Abbotsford House in 
the Scottish Borders, 
fitted with four new 
gnomons. It was last 
recorded (SRN1462) by 
Andrew Somerville in 
1988.  Time for a new 
report? 

After Gatty. 
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Many of us go out recording dials for the BSS Register or 
for our own amusement. Often when we come to a church 
we want to know how high the dial is up the tower and how 
big it is. At such a distance it is often difficult to judge 
these sizes correctly. What we need are some simple-to-use 
aids to measurement. We could, of course, use (often ex-
pensive) surveying instruments but my preference is to use 
simple home-made devices which are often just as effec-
tive. Without any aids we will subconsciously try to esti-
mate height by imagining a man standing below the dial 
and how many times his height will go into the dial height. 
In many cases we will be fairly accurate. However, in look-
ing through records in the BSS Register I have noted differ-
ences of perhaps 2:1 between different reporters.  Some are 
therefore better estimators than others. Ideally, we want to 
get a simple method giving results within ±10% if possible, 
but certainly closer than ±20%. 

Firstly, to measure the height of the dial. We can do this by 
trigonometry. This is all very well, but I have forgotten 
most of mine. What I need is something very simple.  I fall 
back on the old device known as a Shadow Square. This 
was used for hundreds of years for solving exactly the same 
sort of problem. Yes, it does use trigonometry but in a 
‘painless’ sort of way.  It actually uses tangents - but we 
don't need to know that. 

Construct your own shadow square by drawing two equal 
length lines at right angles on a card or board so as to form 

two adjacent sides of a square. Divide each into the same 
number of equal divisions. This can be any number but for 
simplicity of mental arithmetic use 10 or even 20. If you 
really want accuracy go for 100. Fig. 1 shows the shadow 
square on a quadrant divided by 50 (perhaps not an ideal 
figure for mental arithmetic). From the apex of the device 
add a plumb line. Along one edge of the device add pin-
hole sights or you can simply sight along its edge. You can 
see one of the sights on the top right of the old quadrant. 

In use, measure your distance from the church tower by 
pacing (you can even measure your paces later) or better 
still by using a tape measure. Pacing may not give you the 
accuracy that we seek. Ideally, position yourself such that 
the dial is at about 45° up, but this is not critical. Due to 
walls, gravestones and trees you may have to work at any 
angle. Sight along the edge of the device to the lower edge 
of the dial then clamp your thumb against the plumb line. 
Read the figure on the shadow square where the line 
crosses it. All you then need to do is to calculate the ratio 
(tangent) of the number divided by the full length of the 
scale.  For example, if the line crosses 8 along the horizon-
tal scale (assuming a 10 division scale), the dial is at 8/10 

HOW BIG - HOW HIGH? 
 

MIKE COWHAM 

Fig. 1.  Shadow square on 18th century quadrant. 

Fig. 2.  Picture of the Anglo-Saxon dial (just above the 
lower window) at Barnack, Cambridgeshire.  The image 
has been distorted so that vertical lines are now parallel.  
The dial width can easily be related to a measurement of 
the door at ground level.  There is also some spherical 
distortion caused by the camera lens but this has been 
ignored here.  
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(or 80%) of the distance that you measured from the base of 
the tower, but don't forget to add the height of your own 
eye level to the result (1.72 metres in my own case).  If, 
however, the line crosses the vertical scale at 7, then the 
opposite ratio is used giving 10/7 (or 143%) times the dis-
tance from the tower. 

If the dial is not too high then a further reading taken from 
its top will give its approximate height when the lower edge 
reading is deducted, but this is often not suitable for 
smaller, very high dials. The way to proceed then is to find 
something that will relate to the dial.  It may be surrounded 
by bricks or stones. Are these the same size as those at the 
base of the tower? If so, a simple measurement of one can 
be multiplied by the number of bricks/stones across the 
dial.  Another way is to measure the width of the tower and 
estimate how many dial widths will go into that width, 
bearing in mind that a tower is often wider at the base than 
the top, but its sides are usually stepped, so parallel in each 
section. A sure way to do this is to take a photograph and 
work it out later. You may even want to adjust the picture 
to show the sides of the tower to be parallel by using suit-
able software as in Fig. 2. Otherwise, you can draw in lines 
parallel to the outside of the tower towards a vanishing 
point (remember these from school perspective lessons?). It 
doesn’t matter that the dial may now be distorted as it is 
just the ratio that you need to get its size. Unless the dial is 
round, do not attempt to work out its height due to fore-
shortening, unless you want to use trigonometry. 

On my quadrant, Fig. 3, I have added a cosine scale to let 
me do this simply but I hardly ever need to use it and I will 
delete it in the future. I can always refer to these tables later 
in the comfort of my home with less liability for error. Its 
omission will also let me increase the size (and hence accu-
racy) of my shadow square. 

A dial mounted on a brick wall is proba-
bly the ideal. All that we need to do is to 
determine the size of the bricks including 
the mortar layer and the result is simple to 
find by counting brick layers and lengths. 
Unfortunately, bricks do not always seem 
to be of the same size, so a measurement 
at each site is really essential. When I was 
a lad, I was told that bricks were 9" long, 
4" wide and 3" high but now that they are 
made in metric sizes this does not apply. 
Also, older bricks tended to be signifi-
cantly smaller, particularly in Medieval 
churches. 

I find that the need to measure the dis-
tance from the dial to my observation 
point is a bit complicated. Do I really 
want a tape measure to carry around? Will 
I find someone to hold one end of the tape 
for me? Will I need to stand several tape 

measure lengths away from the tower to get a good view of 
the dial? The alternative, to pace the distance, does lead to 
errors so perhaps this is not the best idea for the accuracy 
that we require. I have therefore come up with a much sim-
pler method using basic height comparison. All that this 
requires is a mark on the tower at a known height. Of 
course, we should not deface the tower or wall with a real 
mark, not even a chalk one, but we should try to find an 
existing mark that is perhaps the height of part of our own 
body, perhaps the top of our head or at our eye level.  We 
can easily measure ourselves later to get this figure. The 
next thing to do is to stand back and estimate how many 
times this height will be needed to reach the lower edge of 
the dial. This is all very well but we need to keep the ob-
serving angle small, certainly less than 30°, or we need to 
start correcting for perspective. This process requires fairly 
complex (for me) mathematics, so I would try to avoid it. 
However, I have produced a chart showing the correction 
factor over a range of angles. This is reproduced graphi-
cally in Fig. 4. Tony Belk has kindly looked at my graph 
and and has produced the following formula for it:  

Correction Factor = tanQ/Q ¥ 180/p  
or  

Correction Factor = 57.2958 ¥ tan Q/Q 

Here you will see that even at 30° elevation the error is only 
10%, but this is already at the limit of our desired accuracy. 
As angles increase above this the correction necessary in-
creases dramatically with 27% at 45° and 65% at 60°. Even 
with the corrections from this chart I would prefer not to 
use elevation angles of much more than 45°. If we want to 
do this accurately, then we need to use the degree scale to 
our quadrant. However, I think that many of us can estimate 
an angle fairly accurately, and if this is only around 30° the 
error is going to be insignificant. If we estimate 20° instead 
of 30° the error will only be 6%. 

Fig. 3.  Design of simple quadrant for surveying. 
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PRACTICAL RESULTS 
I have talked at length about the theory and methods but 
now feel that some practical examples of what can be 
achieved will show the flexibility of the methods proposed.   

I went to photograph the pair of dials at Magdalen College, 
Cambridge. Fig. 5.  Luckily the dials were mounted on a 
brick wall - but I had forgotten to take any measuring in-
strument.  I could have used a person for reference but fum-
bling in my pocket I pulled out my wallet and placed it 
against the bricks, taking the all-important photograph (Fig. 
6) of it for reference. From later measurements I deter-
mined that the size of each brick was 6.28cm high and 
20.8cm wide.  Furthermore, the height of a brick with mor-
tar is 7.44cm. From the photograph I counted 78 courses to 
the lower edge of the motto which works out to be 5.8m 
above ground level. The dials are 13.3 courses from top to 
bottom, making them 1m high. One brick plus one end-on 

brick plus mortar = 31.6cm wide. The left dial is therefore 
948mm wide and the right 896mm wide. This is probably 
950 and 900 respectively as these are modern dials and 
would have been made to metric dimensions. The differ-
ence in width of the two dials is surprising. However, now 
that I know this, looking at the photograph shows it quite 
clearly. Another ‘trick’ of digital processing allowed me to 
correct for twist and perspective.  The result (Fig. 7) gives a 
straight-ahead view. Note that in doing this sort of correc-
tion that it will only work in one plane (that of the dials in 
this case) and that the gnomons sticking out will be incor-
rectly positioned in the result. I have left the original 
boundaries of the photograph intact so that you can see how 
much ‘correction’ has been applied. 

Another very useful tool has been added to my armoury. I 
usually carry a tripod so that I can get good shots through a 
telephoto lens of those really high dials. I have marked 
clearly along one leg measurements in increments of 10cm. 
(It could equally well have been a walking stick or we 
could use the height of a person.) The whole tripod when 
extended is just over 1.2m long. Now I have a real ruler to 
measure things. Fig. 8. It was ideal for measuring the door-
way at Barnack, Fig. 9. From this measurement the dial at 
Barnack was found to be 0.55m diameter. This technique Fig. 5.  Pair of vertical dials mounted 

high on a brick wall at Magdalen College, 
Cambridge.  Fig. 8.  Tripod marked with 10cm measurements.  

Fig. 4.  Correction to vertical measurement as angle is increased.  

Fig. 6.  Using a convenient object as a makeshift size 
reference: in this case, a wallet. 

Fig. 7.  Correction of perspective revealing that the two 
dials really are of different sizes! 
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1.275 which gives 5.5 tripods to which we must again add 
the 1.5 tripods below eye level making a total of 7 tripods.  
A small error, if not corrected, of around 6%. 

COMPUTER MEASUREMENT TECHNIQUES 
In the above examples I have used Paint Shop Pro‘ soft-
ware for determining size ratios between objects.  Other 
photo handling software will operate in a similar fashion 
but my notes refer to Paint Shop Pro. 

With my photograph on the screen I set a frame exactly 
around my reference (usually a tripod) and crop the picture. 
The software will tell me how many pixels high (or wide) it 
is.  Returning to the complete picture I do the same with the 
dimension to be measured, noting again the number of pix-
els. A simple mathematical division will then give me the 
exact ratio between the two objects.  

The same software allows me to straighten, untwist and generally manipulate 
images.  Naturally such ‘distortion’ of images needs to be used with care but it 
can be very useful. A recent example is the early dial at Castle Frome in Here-
fordshire. This is inside the church porch and is now covered by a dense wire 
mesh to protect it from pigeons. A photograph through the wire proved virtually 
impossible. However, I noticed that the dial could be seen behind the last 
wooden beam through a gap, perhaps no more than 50mm wide. I took the pho-
tograph in Fig. 11a. When this was stretched using my software (Fig. 11b), I 
could see quite clearly that the dial is divided into 6 segments. Admittedly this is 
not a good picture and I plan to return and, with permission, remove the wire 
mesh to make a proper record of the dial. 

SUMMARY 
The techniques described in this article can be quite simply applied to dial 

size and height measurement without recourse to higher mathematics. 
Our aim, to keep errors below 10%, has been more than achieved 
on most occasions. Other variations on these techniques will be 
found that should simplify future measurements still further. 

Author’s address: 
PO Box 970, Haslingfield, 

Cambridge CB3 7FL  

can also be used quite simply for determining heights of 
dials.  It is just necessary to lean it against the wall below 
the dial and to photograph it. Fig. 10 shows a simulation of 
measuring the height of the vertical dial at Sandringham. 
Here the tripod has been used as the basic reference. How-
ever, due to perspective the dial will be somewhat higher 
than we think. When we try to add together multiple tripods 
we effectively see each one at the same distance as if they 
were in an arc in front and above us. In this example we are 
measuring about 5.8 tripods but the observing angle to the 
lower edge of the dial is about 45°. From our chart in Fig. 4 
we find that the dial is actually 1.275 times higher, or 7.4 
tripods high.  As this is a simulated example I am not going 
to give real measurements in this case. However, one error 
has crept in here.  This is due to the number of tripods be-
low our eye level. Let’s assume that this is 1.5 tripods. We 
know that with such a small angle, perhaps less than 10°, 
we can ignore any errors of perspective, therefore the per-
ceived height is 5.8 - 1.5 = 4.3 tripods. We then multiply by 

Fig. 9.  Measuring the doorway at Barnack Church. 

Fig. 10. Using tripods to measure the height of the dial at 
Sandringham. 

 

45° 

Fig. 11.  Original (top) and expanded (bottom) 
photographs of early dial at Castle Frome, Hereford.  
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BOOK REVIEW 

Designing Sundials: The Graphic Method by Margo 
Anne King, Algrove Publishing Ltd, Ontario, Canada, 
2007, ISBN 978-1-897030-60-8. 9" ´ 11¾". Distributed by 
Lee Valley Tools (www.leevalley.com). Price $15.50 USD. 

This new soft cover book of 121 pages is subtitled ‘How to 
design accurate sundials for any place on earth’. The 
introduction to the book makes the statements that it ‘is for 
the mathematically unsophisticated, deals with a wide 
variety of sundial types, provides all necessary technical 
information in plain language, gives the information 
necessary to make dials for anywhere on earth, and 
provides clear concise step-by-step 
design instructions’. The book has 
excellent clarity of printing with some 
147 figures to assist the reader in the 
design processes, allied to the usual 
tables for the equation of time and 
longitude correction. 

The book is divided into two parts. Part 
One covers the basics of dialling and 
deals with fundamental information 
such as the gnomon and systems of time 
keeping, basic types of sundial, and 
optional features such as adding special 
dates to the sundial furniture. The 
figures give the reader very clear 
information regarding why the angle of the gnomon relates 
to latitude, how different dial formats are derived, and a 
few diagrams to illustrate how the basic layout of the dial 
face may be manipulated artistically to give a different look 
to the dial. In the introduction the author makes the 
comment that ‘no attempt has been made to deal with the 
endless possibilities for artistic design ..’, and in this respect 
I feel that the book has missed a trick in that it seriously 
lacks any examples of dials to give the reader inspiration! 

Part Two concentrates on the instructions for designing and 
laying out a dial in its various formats. It starts with 
General Instructions and then Specific Instructions for the 
range of dial formats from equatorial to polar. The Specific 
Instructions section separates dials into two groups: 
convergent hour line dials and parallel hour line dials. The 
first group covers the equatorial, armillary, horizontal, and 
vertical dials, the second group covers various formats of 
polar dial. Some 86 pages are given over to covering all of 
the necessary graphical instructions which are extremely 
comprehensive. However, it is this very comprehensiveness 
which throws up one of the difficulties with this book 
which is that it is overloaded with cross referencing of 
instructions making it tedious to use. 

Following on from the Specific Instructions section are four 
appendices. Appendix A contains information for 
correcting for longitude, appendix B covers converting to 

Mean Time with tables for the equation of time and 
declination of the sun, appendix C deals with Daylight 
Saving Time, and appendix D deals with various methods 
for finding north. The book is completed with a glossary, 
acknowledgements and sources. The ‘sources’ section does 
not give any indication of what part or pages of each 
reference were used to guide the author, nor does it indicate 
where it was used in the book. Several Internet source 
addresses are also provided but without a descriptor 
attached which would help to provide the reader with an 
indication of the relevance of the reference. In addition, 
Internet addresses are notoriously unreliable inasmuch as 

they change without warning or 
disappear completely, thus a descriptor 
which can provide key words for future 
information searches is a necessity.  

There are some disappointing issues 
with this book. In the section ‘Drawing 
double-S hour lines on convergent-hour 
line dials’ on page 22, no explanation is 
given for the eccentric circles in the 
design or their derivation, which would 
be very confusing for a beginner to the 
subject. Also on page 38, instruction 12 
states ‘you may use a batten for this if 
familiar with its use’, but there is no 
explanation as to what a ‘batten’ is for a 

reader unused to such terminology. Of more significance 
however is that within weeks of the book’s publication 
Roger Bailey, Secretary of the North American Sundial 
Society (NASS), found a significant error in the section on 
vertical declining dials which has resulted in the publisher 
issuing three pages of errata.  However, the publisher has 
stated that the next printing will contain the revisions. 

To summarise; this book is an ‘instruction book’, it is not a 
book to read or peruse for inspiration. It is a very 
comprehensive text for those diallists wishing to carry out 
all of their sundial design graphically. However, the book is 
a paradox. On one hand it states an intention to be a simple 
alternative to the trigonometric approach and yet on the 
other hand, as a result of the very comprehensive cross 
referencing, it is not the easiest book to use. It is not clear to 
the reviewer at whom this book is aimed. The very detailed 
instructions will probably be easily understood by a dialling 
enthusiast with experience, who doesn’t really require a 
step-by-step graphical approach, but they will prove 
somewhat daunting for a newcomer to sundial design and 
construction. If the intention was to encourage the 
newcomer, afraid of mathematics, to the subject of dial 
design then it should really have contained some 
inspirational illustrations as well! 

Martin Jenkins 
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even though the continuous metal depletion causes the 
patina level to sink. This retention does not occur on the 
black islands so the available patterns are fragmentary. 
Perhaps there is an optical technique that might allow more 
fragmentary lines to be retrieved. There are certainly more 
lines on the Lyme plate than I was able to decode. I had 
always assumed that the differential corrosion (green seas/
black islands) indicated a distribution of alpha and beta 
phase metal in the casting. If that is the case then the dial 
plate is most probably brass rather than bronze as I had first 
imagined before reading the article.   

2) I have examined many P&G heliochronometers (HCs), 
which were claimed to be cast in gunmetal, and have 
removed the corrosion on several using a proprietary metal 
de-corroder. This is often necessary in order to achieve the 
required mechanical movements or to make the scales and 
divisions readable. My subjective view is that the early HCs 
are rarely destructively corroded, but the later Mk.2 version 
can be.  After cleaning, the exposed metal is often speckled 
with small light and dark zones. I have assumed that this 
was evidence of differential response of the two phases to 
the same corroding agents, where metal lost is discoloured 
whilst metal protected stays bright. But the article explains 
that the two phases cannot exist in gunmetal. One 
possibility is that as tin became more expensive brass was 
substituted for gunmetal. Analysis of samples will provide 
the answer.  

Graham Aldred 
Disley, Cheshire 

 

An Armillary Dial 
This photograph of the novellist Edgar Wallace (1875-
1932) was taken in May 1928 in the front garden of his 
residence ‘Bella Vista’, Bourne End, Bucks.  Together with 
his wife and children Michael (11) and Penelope (5), it 
shows a rather fine armillary sphere. 
Wallace was born in Greenwich and wrote over 170 
novels. They were mainly thrillers and included the Four 

Just Men series.  At the time of his death he was in 
Hollywood working on the script for King Kong. 
An armillary of the same design, including the rather 
unusual ‘bell-and-sphere’ supporter, is currently in the 

Topiary Garden at Hever Castle, Kent (SRN 2178).  The Hever dial is on a different, though equally elaborate, pedestal and is 
accompanied by a plaque suggesting that the dial dates from 1730.  Are there two ‘production’ dials of this design from 
such a relatively early date or is it the same dial? 

READERS’ LETTERS 
continued from page 111 

JD 

Redacted
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    DRILLING BRASS WITHOUT TEARS 
 

TONY MOSS 

Anyone who has had cause to drill holes in brass may have 
mixed feeling about doing so again.  The main reason for 
this is that many of the copper alloys can be described as 
‘greedy metals’ i.e. what is a ‘drill’ for iron and steel be-
haves like a coarse-pitch ‘screw’ when used on brass.  This 
results in savage ‘dig-ins’ with the metal flying around with 
the drill or in some cases shooting up the drill shank if inse-
curely held.  ALWAYS use a hand vice when drilling brass 
sheet.  Delicate surfaces can be protected with masking 
tape. 

A very simple modi-
fication to any stan-
dard drill will trans-
form this process 
from hazardous to 
totally benign but 
does require two sets 
of drills with one set 
modified for brass 
only. (Fig. 1.) My 
brass drill box is 
painted yellow and, 
as each drill is modi-

fied for use, I replace it point down to distinguish it from 
the untreated ones.  Special drills for brass can be obtained 
but are a rarity in tool shops. (Fig. 2.) 

So how is this crucial transformation arrived at?  Very sim-
ply by ‘blunting’ 
the drill’s cutting 
edge to a vertical 
‘flat’ so that it 
‘scrapes’ rather 
than cuts.  Brass 
usually prefers to 
be scraped in 
most cutting op-
erations.  Hold 
the drill in the 
vice with its cut-
ting edge vertical 

(Fig. 3) and some ten strokes with a half-round diamond-
coated file will do the job. (Fig. 4.)  Begin with the largest 
drills in the box to develop the necessary skills.  Diamond 
files are now commonly available and inexpensive. 

That’s all there is to it.  You will be amazed at the differ-
ence a few file strokes can make.  

tony@lindisun.demon.co.uk 

Fig. 2. 

Fig. 1. 

Fig. 3. 

Fig. 4. 
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Ten years ago I described1 some life sized 18th century fig-
ures cast in lead and supporting sundials on their heads. I 
called these, not pedestals but ‘sundials supporters’. They 
were the first mass-produced garden ornaments and six 
types were sold; two versions of a blackamoor, two ver-
sions of Father Time, an Indian, and one which has never 
yet been found, Hercules. The figures are attributed to the 
sculptor John Nost (Jan van Ost) or to his one time associ-
ate Andries Carpentiere, or to John Cheere who purchased 
John Nost’s stock and carried on selling them using his 
moulds. 

In the intervening years, nine more figures have come to 
light together with more information on the history of some 
of them. This article is acknowledgement and thanks to the 
several BSS members, and two non members, who have 
found, recorded and told me of them. Their names appear in 
this article so I thank them all and apologise for any miss-
ing. Three of the figures were originally wrongly identified, 
so I have included here the key characteristics of each.  All 
are made of lead but most appear to have been painted so 
may look like marble if white or bronze if shiny brown. 

The Old Blackamoor wears a feather skirt, kneels on his 
left knee and looks to the left. It is attributed to John Nost 
or John Cheere. 

1. Wiltshire. SRN 3802. (Fig. 1) Recorded by Chris Daniel.   
Painted a shiny brown so it appears to be bronze. 

2. West Green House, Hartley Witney, Hants. SRN 4368.  I 
first noticed this in a gardening magazine.  It was also 
recorded by John Davis and Andrew James. 

3.  Dallam Tower, Milnthorpe, Cumbria. SRN 3978.  Re-
corded by Robert Sylvester after information from Peter 
Cooper, a non-member.  Dallam Tower was built in 1604 
and the sundial appeared about 1720. The uncle of the 
present owner, in a moment of revelry, shot the figure 
and the gun is still in the house. The actual dial is cor-
roded, but the figure is in good condition, apart from the 
bullet holes which were repaired in 1983. 

4.  Yale University, Connecticut, USA.  Now lost.  The 
blackamoor figure, representing America, was supposed 
to be a Red Indian which, with the Asian Indian and other 
figures never made, was part of a set believed to have 
been intended to represent the continents. An Indian fig-
ure was set up at Hampton Court in 1702, but two months 
later William III died and no more figures followed so 
that was the end of the project; anyhow that is the story. 

In 2001, Fred Sawyer bid in an internet auction for some 
postcards as one was of Elihu Yale’s garden at Glemham 
Hall, Suffolk, with a sundial in the centre of the photo-
graph. Elihu Yale was the founder of Yale University. 
Fred did not win the bid but later managed to purchase 
the card from the buyer.  I had already listed in my first 
article a blackamoor figure with dial once at Glemham 
Hall, now lost.  Fred sent me a photograph of about 1940 
of the dial in a courtyard of Johnathan Edwards College, 
Yale, in excellent condition. This blackamoor must there-
fore have travelled with Elihu Yale back to his home, all 
the way to America, but now he is lost again and there 
appears no record of his present whereabouts. 

5. Painswick Hall, Gloustershire.  In 2007, three BSS mem-
bers (John Davis, Harriet James and Tony Wood) visited 
Painswick Hall and met the owner.  In the house was a 
painting, a landscape of the house and gardens in 1748 by 
Thomas Robins (fig. 2). They were very sharp eyed to 
notice on the painting the tiny figure of a blackamore 
with dial on the lawn. John photographed the painting 
and it shows what I think is the old blackamoor on a 
square tiered plinth of the correct shape. A different ped-
estal now occupies the plinth. 

SUNDIAL SUPPORTERS REVISITED 
 

ROGER BOWLING 

Fig. 1. The Old Blackamoor, Wiltshire. 
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The Young Blackamoor wears a feather skirt, kneels on 
his right knee and looks to the right. His face is also 
younger but he does not look any happier. Attributed to 
Andries Carpentiere.  Surprisingly, no more of these figures 
have appeared, either new ones or records of lost ones.  
There must have been far fewer produced than the old ver-
sion, despite the fact that the old version seems to have 
been very popular: maybe Andries Carpentiere charged 
more. 

The Indian.  Wears a loin cloth and turban.  Attributed to 
John Nost 

1. Pine Lodge Gardens, St. Austell, Cornwall.  SRN 5145, 
(fig. 3). Recorded by B.G. Kirkman, a non-member.  This 
is only the second Indian figure supporting a dial to ap-
pear, although there is a third at Melbourne Hall, Derbys. 
supporting a salver and urn. 

Father Time 1 has wings and a beard, and holds the dial 
with both hands. Attributed to Nost and Cheere. 

1. Flaxley Abbey, Gloustershire. SRN 3181, (fig. 4). Re-
corded by Tony Wood.  The only other figure like this is 
at Blair Castle, Tayside. 

Father Time 2 has wings and a beard, and holds the dial 
with one hand. Attributed to Nost and Cheere. Ian Butson 
has provided more information about this figure. I previ-
ously noted it from a London saleroom catalogue of 1986 
which stated it to be from St Osyth Priory, Essex. Ian has 
found a better photograph from a small book, Essex Curi-
osities by Derek Johnson, and another catalogue, the four 
day sale of the contents of the Priory in 1920. This lists 
three dials; one “A fine XVII cent. cast lead figure of Time 
supporting a sundial, 3' 6" high on a square stone base”.  In 
fact it is 18th century and is life size.  Clearly, in 1920 the 
figure did not sell or the new owners decided to keep it at 
the Priory until 1986. Its present location is still not known. 

The above two versions of Father Time are lead figures 
usually attributed to John Nost, not to be confused with the 
three stone figures also attributed to him which I described 
in a later article, which also included versions by other 
sculptors.2  Illustrations of some of these can also be found 
in another article.3  Those members who attended the BSS 
Conference in Cambridge may have seen the fine figure of 
Father Time in the gardens at Anglesey Abbey but, for 
those who didn’t, a photo by David Le Conte appears on 
p.87 of the June Bulletin. 

A Father Time figure in stone.   Fawley Court, Henley on 
Thames,  Oxon. (fig. 5). Recorded by Ian Butson.   I men-
tioned the figure in the second of my articles, a poor picture 
of which I found in Garden Ornament by Gertrude Jekyll, 
1918. There was no attribution or location given. I did not 

Fig. 2. The gardens, Painswick Hall, 1748 (detail). Thomas 
Robins. The painted figure is less than 10mm high. 

Fig. 3. The Indian, Pine Lodge Gardens, Cornwall. 

Fig. 4. Father 
Time, Type 1, 
Flaxley Abbey, 
Gloucs. 
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provide a photograph as I had only a very poor print. I 
noted that the figure was strange, nothing like the others, 
which show a stern Father Time looking down at the dial on 
a plinth; this man is evil, cadaverous, cringing and seem-
ingly insisting that he shows you the time. I have not had to 
alter my opinion.  After 90 years he has been rediscovered 
by Ian at Fawley Court, Near Henley, Oxon.  The dial is a 
poor, broken, modern thing. There is no record of where the 
figure was before its present location or how long it has 
been at Fawley Court. 

Fawley Court was designed by Christopher Wren and built 
in 1683. Grinling Gibbons and James Wyatt both had a 

hand in the decoration of the house and ‘Capability’ Brown 
in the design of the park. In 1953 it was bought by the Pol-
ish Congregation of Marian Fathers and it now houses a 
large collection and exhibition of Polish history. It is open 
to the public on certain days. The Fathers have no knowl-
edge of the sundial’s history; presumably it was there in 
1953. 

In the ten years since my first articles, five new figures 
have been found. Two further figures, the present locations 
not known, have been noted and one of these may be in 
America. A little more information has come to light on one 
figure that should still be in the country and a stone Father 
Time dial has reappeared after 90 years.  The total of extant 
lead figures now stands at fourteen but two of these do not 
carry sundials. There were in 1997 fifteen lost dials, with 
past locations known. Of these, one reappeared in 1940, at 
Yale University, only to become lost again.  There has been 
no sighting of the lost Hercules figure even though he ex-
isted up to about 1950. Of the life-size or larger stone or 
Coade stone Father Time figures, I listed seven. The where-
abouts of two were unknown, but one has reappeared. It is 
satisfying when one’s small effort bear fruit. 
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Fig. 5. ‘Would you want this man in your garden?’, Father 
Time,  Fawley Court, Henley, Oxon.  
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Following on from Piers Nicholson’s article on Noon 
Cannons on pp. 9-10 of this issue, Chris Daniel has 
supplied a picture of a solar cannon being fired at the 
Palais Royale Gardens in Paris. It is taken from the 
English edition of M. Arago’s L’Astronomie Populaire 

(Popular Astronomy), c.1870. 

Since the gun fires (theoretically) at solar noon, we 
hope that the French gentleman has already consulted 
an Equation of Time table before checking the 
accuracy of his watch! 
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INTRODUCTION 
Of the many lines of ‘furniture’ to be found on sundials, 
probably the most common ones are ‘lines of declination’.  
As the sun moves north or south throughout the year its 
position in declination can be indicated by the shadow of a 
small index (called the nodus) falling on the appropriate 
line.  These lines can be identified either by declination or 
by date since  declination correlates with the calendar.  In 
the former case, a simple arrangement is to indicate the 
position when the sun enters a zodiacal sign: often these are 
reduced to only the solstices (signs of Cancer and Capri-
corn) and the equinoxes (Aries when the sun is northbound, 
Libra when southbound).  At present, the sun’s declinations 
at entry to each sign are Cancer +23.44°, Gemini and Leo 
+20.15°, Taurus and Virgo +11.47°, Aries and Libra 0°, 
Scorpio and Pisces -11.47°, Sagittarius and Aquarius           
-20.15° and Capricorn -23.44°. Dates can be chosen to rep-
resent  occasions such as anniversaries: birthdays, wed-
dings…..  However, such date lines are not unique to one 
date, the nodus shadow will fall on a line twice in the 
course of a year (except at the solstices).  For example, 

lines for both May 8 and August 5 will catch the shadow 
when the sun’s declination is +16º.  Declination lines are 
uncommon on horizontal dials, although present on several 
very early examples. 

CONIC SECTIONS 
It is well known that a declination line is a section of a cone 
called a hyperbola which is represented by the edges of the 
cone revealed by the section. As shown in Fig. 1, other sec-
tions are possible.  If the cone is cut perpendicular to the 
axis a circle is produced.  A cut which meets the axis at an 
angle greater than the cone semi-angle (θ) gives an ellipse, 
and the nearer the approach of the section to θ the more 
elongated the ellipse will be. A parabola is given by a cut 
which meets the axis at angle θ.  The circle and ellipse are 
closed curves since the section cuts across the cone: the 
parabola  is an open curve; the section does not meet the 
opposite edge. 

Fig. 2 shows the case of the hyperbola. The cut is taken 
meeting the axis at an angle less than θ.  Suppose now that 
an identical cone is placed vertex to vertex and on the same 
axis: the section will also cut this second cone as shown, 
producing two branches. Perhaps rather surprisingly, the 
two hyperbolae produced are duplicates, the one being the 
reflection of the other in a line midway between them and 
perpendicular to their centre-lines.  In this way hyperbolae 
have four-fold symmetry and again are open curves.  The 

LINES OF DECLINATION AND TWO SEVENTEENTH 
CENTURY DIALS  

 
MICHAEL LOWNE and JOHN DAVIS 

Fig. 1.  Conic sections: circle, ellipse and parabola. Fig. 2.  Conic sections: the two branches of a hyperbola.  
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parabola is a unique curve and represents the boundary be-
tween the infinity of ellipses on one side and of hyperbolae 
on the other. 

The Application Of Conic Sections To Sundials 
This article concentrates mainly on horizontal dials. Leav-
ing aside for the moment the cases of circles, ellipses and 
the parabola, first consider how hyperbolae arise on such 
dials.  Fig. 3 shows a section of a horizontal dial along the 
meridian and two declinations of the sun throwing shadows 
of the nodus on the dial plate.  As the sun moves across the 
sky during the course of a day the shadow will trace out a 
part-cone which is intercepted by the dial. The axis of the 
cone is the style and its semi-angle θ is (90º-δ) where δ (the 
sun’s declination) is taken unsigned. The angle between the 
style and the dial plate is of course the latitude φ and if φ is 
less than θ  the arc of the intersection of the cone and the 
plate will be a hyperbola.  If, as shown in Fig. 3, the two 
declinations are equal but of opposite sign the values of  θ 
of the two shadow cones will be identical.  As they meet 
vertex to vertex at the nodus and have a common axis in the 
style the conditions of Fig. 2 will be met and the hyperbolae 
produced will be mirror images.  Although it is of course 
well known that declination curves are hyperbolae, it is 

perhaps not so well known that arcs of equal but opposite 
declination duplicate each other in this way.  This may not 
be obvious on an actual dial as the diverging hour lines will 
tend to disguise it.  In Fig. 3 the line passing through the 
nodus at a right angle to the style is the shadow at the equi-
noxes which projects onto the dial as a straight line perpen-
dicular to the meridian.  The declination arcs are symmetri-
cal about a perpendicular through the mid-point between 
them, but this is not the equinoctial line. 

Declination lines will appear as other conic sections under 
certain conditions. For an equatorial dial, the section of the 
cones of declination by the dial plane is orthogonal to the 
cone axis and the lines are arcs of circles. For dials at high 
latitudes, if (90-δ) is equal to the latitude the line is a parab-
ola, and if less than the latitude it will be an ellipse or part 
of an ellipse. 

There can be a choice in the type of the nodus: generally it 
takes the from of a small nick in the style but is sometimes 

made as a short cross-piece. The nodus height above the 
dial plane is also a matter of choice: the greater the height 
the wider the separation of the declination lines will be but 
the coverage in time will be lessened. 

Delineating The Declination Lines 
Methods of inserting lines of declination can be graphical, 
mechanical or by calculation.   Graphical methods are given 
by Mayall1  and by Waugh2 (credited to William Ley-
bourn3).  A difficulty with such methods is that the con-
struction lines can meet at an acute angle with the likeli-
hood of errors unless very carefully drawn.  Trigons are (or 
were) extensively used: in its simplest form a trigon is a 
mechanical device with an axis which replaces the gnomon 
and can be set to the appropriate latitude and declination to 
sweep out the lines on the dial face.4-7 

Various methods of calculating the lines have been pro-
posed and in these days of computers (or even pocket cal-
culators) calculation must surely be the preferred 
method.2,8-10  Some methods are based on conversion of 
altitude and azimuth to rectangular coordinates on the dial 
plane, but the coordinates can be calculated directly from 
latitude, declination and hour-angle.  Here we consider the 
gnomonic projection on which plane dials with a polar gno-
mon are based.  The nodus is taken to be at the centre of the 
hemisphere of the sky and positions are  projected through 
the nodus on to the dial plane.  The nodus lies within and at 
the centre of circles which divide the sphere equally (great 
circles) and project as straight lines. All other circles whose 
planes do not pass through the nodus (small circles) project 
as conic sections.  In the case of a horizontal dial, azimuths 
of the sun are reproduced as angles from the sub-nodus 
relative to the sub-style and are at distances from the sub-
nodus proportional to the cotangent of the altitude. 

Several formulae for the gnomonic projection on a horizon-
tal dial are possible.  One of the most straightforward is: 

x =  n{cosP.tanh/cos(P-φ)},    y =  ntan(P-φ) 
where 

P = tan-1 (tanδ/cosh) 
n is the vertical distance of the nodus above the dial plane, 
φ is the latitude, δ the declination, and h the hour-angle.  
The expression for P will fail when h=90º (cosh = 0).  In 
this case take: 

x = n/(sinφtanδ),     y = n/tanφ 
The coordinates x and y are measured from the sub-nodus 
as origin, x orthogonal to the noon line and y in the noon 
line.  The signs of y are such that positive values refer to 
directions to the north of the sub-nodus and negative values 
to the south. The gnomonic projection reverses these direc-
tions: positive y is plotted towards the south of the dial-
plate and negative y to the north.  Positions in x are sym-

Fig. 3.  The meridian shadows cast by the nodus. 
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metrical either side of the meridian and need only be calcu-
lated for one side.  Points found for integral hours should 
lie on the appropriate pre-drawn hour lines, but it would be 
advantageous to calculate positions at closer intervals to 
facilitate drawing the curves.  

The formulae can be adapted to dials in orientations other 
than horizontal.  We note that a vertical direct south dial is 
effectively a horizontal dial for a latitude (φ' ) 90º away 
from the desired location (for example -38º for a dial in 
+52º latitude) and by putting this effective latitude in the 
formulae the declination lines can be derived.  For declin-
ing dials the standard dial formulae will give the required 
values: the gnomon angle (usually called the style height) is  
φ' and just as with the normal hour lines the hour positions 
are taken as (h-DL) where DL is the difference of longitude.  
Then in the formulae use φ' and (h-DL).  The resulting x,y 
coordinates are referred to an origin at the sub-nodus. How-
ever, the axes are aligned not to the dial’s noon line but to 
the sub-style line (which is the noon line at the longitude of 
DL). 

Dials which consist of a pin gnomon with its apex as the 
nodus can be delineated by the gnomonic projection formu-
lae without separate calculation of the time lines.  The verti-
cal declining dial shown in Fig. 4 was drawn in this way.  
The latitude is 50·85º and the  declining angle is 52º west of 
the meridian: the points for the solstices and equinoctial 
line were calculated and plotted, then joined with the curves 
for the solsticial lines and straight lines for the equinoctial 
and time lines.  The horizon is represented by the horizontal 
straight line which passes through the sub-nodus and the 
intersection of the 6pm and equinoctial lines. 

TWO SEVENTEENTH CENTURY DIALS BY ISAAC 
SYMMES 
Declination lines have appeared on English horizontal dials 
since the very earliest days of dialmaking, although they 
rather went out of favour on London-made dials after about 
1630.  Two interesting examples, c.1600, are by the London 

clockmaker Isaac Symmes.  (See the appendix for bio-
graphical details of Symmes.)  The two sundials are in mu-
seum collections, one dated 1609 in the Science Museum in 
London and the other in the Oxford Museum of the History 
of Science.  The two dials are different sizes: the Science 
Museum dial is 310 mm square with cut-off corners, the 
Oxford dial is 180 mm square.  The Science Museum ex-
ample is in rather an eroded condition: a photograph of the 
dial plate is given in Fig. 5, shown with a transparent over-
lay to assist in the interpretation.  The Oxford dial is better 
preserved and is shown in Fig. 6.  The dial plate carries the 
maker’s signature:  “Isaack Symmes Gouldsmith and 
Clockmaker”.  (The date of 1755 and the initials R + I are 

Fig. 4.  A pin gnomon dial with declination lines.  

Fig. 6. The Symmes dial at Museum of the History of 
Science, Oxford . 

Fig. 5. Dial plate of the Symmes dial at the Science 
Museum.  The right hand side of the plate is covered with a 
transparent overlay showing the correct delineation. 
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apparently later additions.)  Lines of declination are given 
for the entry of the sun into each zodiacal sign, identified in 
elaborate script.  There are also‘seasonal hours’ and a lunar 
volvelle for time-telling by the moon.  Detailed measure-
ment of the angles of the hour lines shows that the Oxford 
dial is made for a latitude of 52·5º±0·6º.  It is also possible 
to analyse the latitude for which the declination arcs are 
drawn by measurement of their intersections with the me-
ridian line: again the best fit is obtained at latitude 52·5º 
with line error ±0·4mm.   

For additional clarity, a drawing of the dial plate is shown 
in Fig. 7 with the lettering and volvelle omitted, but show-
ing the seasonal hours and the declination lines.  More 
about the seasonal hours and the volvelle later, but first 
look at the declination lines.  It is obvious that they do not 
conform to the necessary conditions outlined above: the 
arcs for zodiacal signs south of the equinoctial line 
(Scorpio-Pisces, Sagittarius-Aquarius and Capricornus) are 
much less curved than the corresponding ones to the north 
(Virgo-Taurus, Leo-Gemini and Cancer). 

Fig. 8 is a drawing of the dial plate showing just the decli-
nation lines of the Oxford dial.  The arcs as they appear on 
the dial are solid lines and their correct positions are broken 
lines.  The lines for northern declinations are reasonably in 
agreement with their correct places, being if anything rather 
too strongly curved.  Although the southern ones are correct 
on the noon line they depart from their true positions at 
hour angles away from the meridian.  In fact the southern 
lines are of approximately the correct shape for declinations 
less than the true ones and are shifted bodily along the noon 
line so that their meridian positions are correct.  Without 
knowing how the lines were drawn it is not possible to say 
with any certainty how the error has occurred.  It is unlikely 
that the lines were derived from calculations: at this date 
they were probably drawn either by some graphical method, 
from tables, or by the use of a trigon. 

The Science Museum dial has similar errors in the declina-
tion lines and there is another anomaly in that the latitude 
for which the hour lines are drawn does not agree with the 
meridional  positions of the declination lines.  The hour 
lines are for latitude 50·0º±0·2º but the best fit for the lati-
tude of the declination lines is 51·5º with line error ±0·2 
mm.  The gnomon angle is 50·8º ±0·2º, neatly between the 
two. 

Fig. 8.  The incorrect positions of the declination lines on 
the Oxford dial. Dotted lines show correct shapes, solid 
lines are the lines on the dial. 

Fig. 7. Drawing of the dial plate of the Oxford dial. 

nodus 

Fig. 9. The gnomon of the Science Museum dial.  The 
chamfered style and the nodus are indicated.  

knife-edge 
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Neither of the dials has a noon gap to accommodate the 
width of the gnomon.  Instead, the style is chamfered to a 
central edge which will lead to inaccuracies in the time 
readings near noon, as the shadows will be cast by the 
shoulders of the chamfer, not the  centre.  This is not impor-
tant in the case of the Oxford dial, the hour lines in this area 
are covered by the lunar volvelle. 

The ornate gnomon of the Science Museum dial is shown in 
Fig. 9.  The nodus and the chamfered style are depicted.   

The Seasonal Hour Lines 
Running between the declination lines for the solstices on 
the two dials are lines identified with Roman numerals I-V 
and VII-XI (the meridian line is VI).  These are seasonal 
hours which divide the sunrise to sunset interval into 12 
equal parts.  The lengths of the ‘hours’ on any particular 
day thus depend on the length of time the sun is above the 
horizon.  Since in the latitude of these two dials the sun is 
up for about 8 hours in midwinter and about 16 hours at 
midsummer, the length of a seasonal hour can vary from 
about 40 minutes (of ordinary time) to about 80 minutes. 

To delineate the seasonal hours it is necessary only to de-
rive their hour points on the declination lines for the sol-
stices and join them with a straight line.  As a check, the 
line should pass through the intersections of the dial hour 
lines with the equatorial line: at the time of the equinoxes 
the sun is up for twelve hours and a seasonal hour is the 
same length as an equal hour of solar time.  The seasonal 
hours for intermediate declinations do not quite lie on a 
straight line11 but their departure from straightness is only a 
minute or two and is not significant on the scale of the dial 
face.  The method involves first finding the actual hour-
angles of the sun at the seasonal hours. These are then plot-
ted at the appropriate points on the dial time calibrations 
and on the declination lines.  The hour-angles could  be 
found by taking the sunrise-sunset interval (the diurnal arc 
of the sun) from the times given in almanacs divided into 

twelfths.  Since the gnomonic projection does not show the 
horizon, the times cannot be found from the dial but could 
be found from a stereographic projection, which includes 
the horizon.  Rohr6 gives the hour-angle of the sun at sun-
rise for the solstices over a range of latitudes.  These values 
are also the semi-diurnal arcs, the intervals between sunrise 
or sunset and the sun’s meridian passage.  For any declina-
tion, the semi-diurnal arc can be derived from  

cos-1 (sinδ/cosφ) 

and then divided into sixths.  Then these points can be plot-
ted as before, or the gnomonic formulae given earlier can 
be used to derive their x, y coordinates. 

The Lunar Volvelle 
A picture of the lunar volvelle on the Oxford dial is shown 
in Fig. 10.  The operation of this uses the compass bearing 
of the moon combined with the age of the moon to tell the 
solar time.  From the outer ring inwards, the first shows 
hours in the 2¥12 hours system, the next has a compass 
rose in 32 points (only alternate ones are labelled).  The 
inner rings rotate independently, the outer one of the two 
carries the age of the moon from new, 1 to 29 days labelled 
at 5-day intervals. The space between 29 and day 1 is wider 
than others to allow for a 29½ day lunation. A small projec-
tion next to 29 is an index for setting the compass direction 
of the moon.  The inner ring carries a large index with a 
straight edge and has symbols indicating some phases of the 
moon from which the age can be determined approximately 
if this is unknown.  New Moon and Full Moon are adjacent 
to and opposite the pointer.  First Quarter and Last Quarter 
are shown by the lines through the small squares where 
these meet the edge of the ring.  The other lines with small 
crossed lines or triangles are the occasions when the moon 
appears to be one-quarter and three-quarters illuminated.   

To use the volvelle, the straight edge of the larger index is 
set to the moon’s age (the setting is valid for any one night) 
and then both circles are rotated together to set the smaller 
index to the compass direction of the moon.  The time is 
then read on the outer circle from the point of the larger 
index.  

Apart from the intrinsic inaccuracies in finding time from 
the moon,12 this instrument will introduce further errors.  
The time is found from the azimuth of the moon measured 
in the plane of the horizon, but should be derived from the 
hour-angle, in the plane of the equator.  With the moon at a 
high declination and in the eastern or western sky, the addi-
tional error could be an hour or more. 

The volvelle on the Science Museum is badly eroded and 
the inner circle is missing, but it evidently operated in the 
same way, with the addition of a pictorial means of depict-
ing the phase appearance of the moon at any age.  This Fig. 10.  The lunar volvelle of the Oxford dial. 
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could be used to derive an unknown age or 
(perhaps more likely) to show the appearance of 
the moon at any age as a guide to its brightness, to 
assist night-time travellers. 

A METHOD OF DRAWING DECLINATION 
LINES 
Should any diallist wish to draw the declination 
lines, the method shown in Fig. 11 may be found 
preferable to the Leybourn method.  It is based on 
the geometric properties of the double hyperbola 
using the major axis, the linear eccentricity and 
the focal points. 

1.  On a horizontal line MM' which represents the 
dial substyle, draw a perpendicular equal to the 
nodus height n.  N is the nodus.  

2.  Draw the style through N at the latitude angle φ. 

3.  Draw NE perpendicular to the style and draw a line from 
E perpendicular to MM'.  This is the dial declination 
line for the equator at δ=0º. 

4.  From N draw two equal but opposite declination angles 
+δ and -δ to meet MM' in A and B.  AB is the major 
axis. 

5.  Find the mid-point of AB at O. 

6.  Draw a line at the latitude angle from O to meet NB at 
D. 

7.  Measure the distance ND.  (Alternatively, measure NA 
and NB and take the mean length.)  The quantity so 
found is the linear eccentricity e. 

8.  On MM' measure off the distance e on either side of O 
to give points F1 and F2. These are the foci of the hyper-
bolae. 

9.  From F1 draw arcs of circles at arbitrary radii r1, r2, 
r3…… 

10. From F2 draw arcs of radii  r1+AB, r2+AB, r3+AB…. to 
intersect the corresponding arcs from F1. For clarity, 
only four intersections on each arc (more would be pref-
erable) on one side of MM' are shown on Fig. 11.  
Those on the other side of MM' can be drawn at the 
same time.   

11.  Joint the points so found with a smooth curve passing 
through A.  This is one branch of the hyperbola.  From 
the properties, at any point P on the curve the distance 
from the further focus is equal to that from the nearer 
focus plus the major axis: PF2=PF1+AB. 

12. Repeat the construction for the other branch of the hy-
perbola through B: PF1=PF2+AB.  

13. Repeat from step 4 for other declination pairs as re-
quired. 
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APPENDIX – ISAAC SYMMES 

Isaac Symmes (born c. 1580, d. November 1622) was a 
London clockmaker.13-17   His name is sometimes written  
Isaack Simmes or countless other variants, possibly because 
he is said to have been of French descent15,17 although his 
father is described on his apprenticeship indenture as 
“Roger Symes clarke of London”.  He was apprenticed to 
John Humphrey of the Goldsmiths’ Company in 1596, later 
being turned over to Richard Lytler and being made free in 
January 1604.  He married Emma Howe in March the same 
year.  They lived first in the area of St Botolph, Aldgate, 
and, after 1612, at Houndsditch just outside the City.  Judg-
ing by his will,18 he became quite prosperous and was a 
well-regarded member of the community, leaving a number 
of gifts to the workers and poor of the district. 

Just before his death he was one of the signatories to an 
appeal to King James I for the formation of a separate 
clockmakers’ guild in an effort to keep out ‘foreign’ work-
ers: the appeal was unsuccessful at the time with the Clock-
makers’ Company not being granted its charter until 1631. 

Symmes is best known as a watch maker though his will 
indicates that he also made clocks.  A particularly fine 
verge watch with alarm has been described by Thompson.14  
It shows that Symmes was inventive as well as a good 
craftsman.  The two dials with declination lines and moon 
volvelles studied in this paper are described by Turner13 
who also shows a simpler dial dated 1610 in a private col-
lection.  In addition, Loomes17 found another simple dial, 
unfortunately with an inappropriate replacement gnomon, 
which is now in the Clockmakers’ Museum, Guildhall. A 

Fig. 11.  Delineating the declination lines. 
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fifth dial, dated 1614, is said to be at Ridlington, Rutland.19  
Five watches signed by Symmes are known.  Some exhibit 
very fine engraving and gilt-brass plates, as might be ex-
pected from someone who trained as a goldsmith; indeed, 
Symmes describes himself on his Science Museum and 
Oxford dials as “Gouldsmyth & Clockmaker at London”. 
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Authors’ addresses: 
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24 Ditchling Way 
Hailsham 

East Sussex, BN27 3LU 

SOLAR and LUNAR DATA 
.

Day Declination Transit Declination Transit Declination Transit Day
1  8° 18' 56'' 12:00:06 -3°08'47'' 11:49:46 -14°23'40'' 11:43:36 LQ 21:18 1
2  7°57'07'' 11:59:47 -3°32'02'' 11:49:27 -14°42'48'' 11:43:34 2
3  7°35'12'' 11:59:27 -3°55'15'' 11:49:08 LQ 10:06 -15°01'42'' 11:43:34 3
4  7°13'08'' 11:59:08 LQ  02:32 -4°18'26'' 11:48:49 -15°20'21'' 11:43:34 4
5  6°50'58'' 11:58:48 -4°41'33'' 11:48:31 -15°38'45'' 11:43:35 5
6  6°28'40'' 11:58:28 -5°04'37'' 11:48:13 -15°56'53'' 11:43:37 6
7  6°06'16'' 11:58:07 -5°27'38'' 11:47:55 -16°14'46'' 11:43:40 7
8  5°43'46'' 11:57:47 -5°50'34'' 11:47:38 -16°32'22'' 11:43:43 8
9  5°21'10'' 11:57:26 -6°13'26'' 11:47:21 -16°49'41'' 11:43:48 N 23:03 9

10  4°58'29'' 11:57:05 -6°36'13'' 11:47:05 -17°06'44'' 11:43:53 10
11  4°35'42'' 11:56:44 N 12:44 -6°58'54'' 11:46:49 N 05:01 -17°23'28'' 11:43:59 11
12  4°12'51'' 11:56:23 -7°21'30'' 11:46:34 -17°39'55'' 11:44:06 12
13  3°49'56'' 11:56:02 -7°44'00'' 11:46:19 -17°56'04'' 11:44:14 13
14  3°26'56'' 11:55:41 -8°06'24'' 11:46:05 -18°11'54'' 11:44:22 14
15  3°03'53'' 11:55:19 -8°28'40'' 11:45:51 -18°27'24'' 11:44:32 15
16  2°40'46'' 11:54:58 -8°50'50'' 11:45:38 -18°42'35'' 11:44:42 16
17  2°17'36'' 11:54:36 -9°12'52'' 11:45:25 -18°57'26'' 11:44:53 FQ 22:33 17
18  1°54'24'' 11:54:15 -9°34'45'' 11:45:13 -19°11'57'' 11:45:05 18
19  1°31'09'' 11:53:54 FQ 16:48 -9°56'31'' 11:45:02 FQ 08:33 -19°26'07'' 11:45:18 19
20  1°07'52'' 11:53:32 -10°18'07'' 11:44:51 -19°39'55'' 11:45:32 20
21  0°44'34'' 11:53:11 -10°39'34'' 11:44:41 -19°53'23'' 11:45:47 21
22  0°21'15'' 11:52:50 -11°00'52'' 11:44:31 -20°06'28'' 11:46:02 22
23 -0°02'05'' 11:52:29 -11°22'00'' 11:44:23 -20°19'12'' 11:46:18 23
24 -0°25'26'' 11:52:08 -11°42'57'' 11:44:14 -20°31'33'' 11:46:35 F 14:30 24
25 -0°48'48'' 11:51:47 -12°03'44'' 11:44:07 -20°43'32'' 11:46:52 25
26 -1°12'09'' 11:51:26 F 19:45 -12°24'19'' 11:44:00 F  04:52 -20°55'07'' 11:47:11 26
27 -1°35'31'' 11:51:06 -12°44'43'' 11:43:54 -21°06'19'' 11:47:30 27
28 -1°58'51'' 11:50:45 -13°04'56'' 11:43:49 -21°17'07'' 11:47:50 28
29 -2°22'11'' 11:50:25 -13°24'56'' 11:43:44 -21°27'31'' 11:48:10 29
30 -2°45'30'' 11:50:05 -13°44'44'' 11:43:41 -21°37'31'' 11:48:32 30
31 -14°04'19'' 11:43:38 31

.Autumn equinox: September 23rd, 09:51

September October November
Moon Moon MoonData kindly 

supplied by 
Fiona Vincent. 
 
For the 
Equation of 
Time, subtract 
12h from the 
transit time. 
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BSS PHOTOGRAPHIC COMPETITION 2006 

Umbrae Sumus  -  John Lester 

BAT-Galliu Polar  -  Shaul Adam 

Time Gentlemen Please  -  Ian Butson 

Dial with latitude, Cat with attitude  -  Mike Shaw 

Redacted
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Two projects for the third Millennium  -  Piers Nicholson 

Celestial Kitchen  -  David Westwood 

Frosty Dial  -  David Hawker 

Reflexions on Time  -  John Davis 

Lost Time  -  Irene Brightmer 

Wild Time: in a Gloucestershire garden     
George White 
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INTRODUCTION 
Declination lines on planar sundials can be drawn using the 
formulae giving the x and y co-ordinates from the sub-nodal 
point on the dial face and requiring the sun’s altitude and 
azimuth to be calculated for each point.1 This is both com-
plicated and time consuming and does not reveal the rela-
tionship between the style height, sub-style line and decli-
nation lines. 

Earlier work of mine describing the use of direction cosines 
in the delineation of planar sundials2 led to the production 
of a formula giving the distance R of a declination line from 
the origin of the dial along an hour line in terms of style 
height SH, the hour angle h0 and L the distance of the nodus 
from the origin along the style.  

 
 

where 
 

 

E is the angle between the sun’s direction at equinox and 
the hour line in the hour plane.2 

Waugh3 described a graphical method attributed to Ley-
bourn4 and Lennox-Boyd5 offered a formula based on this 
construction in terms of SH and X, the hour line angle, 
which leads to the same value of E, which he refers to as t.  

I have developed my formula, eliminating E, to allow decli-
nation lines to be drawn using polar co-ordinates knowing 
only the style height SH and the hour angle h0. I have also 
developed Leybourn’s method, producing a protractor to 
enable declination lines to be drawn simply for any style 
height and declination angle. Declination lines on planar 
dials are hyperbolae and I show that these can be plotted 
with cartesian co-ordinates using only the style height SH 
and the declination δ. This form also allows previously de-
lineated dial faces to be simply checked for accuracy and 
their style height and nodus distance determined.  

POLAR CO-ORDINATE FORM 
The most important simplifying feature is the recognition 
that the position and shape of declination lines with respect 
to the origin and the sub-style line on any planar dial de-
pend only on the style height of the dial and the distance L 
of the nodus from the origin along the sloping style. Inspec-
tion of any planar dial with declination lines shows that 
they are symmetrical about the sub-style line. 

Fig. 1 illustrates this for a horizontal, a vertical south facing 
and a vertical declining dial all reading local apparent time 
(L.A.T.). They are for different latitudes but all have the 
same style height and the same pattern of declination lines 
about the sub-style line. They have different labels on their 
hour lines depending on their orientation and time zone, but 
the relationship between the origin, the intersection of the 
sub-style line with the declination lines and the shape of the 
curves depend only on the style height SH.  

The position of every point on a declination line is given by 
the polar co-ordinates R and X0, given by the formulae:- 

 

DECLINATION LINES DETAILED 
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Fig. 1. Horizontal, vertical south facing and vertical declin-
ing dial faces all with the same style height. 
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where  
X0 = hour line angle (X0=0 at noon LAT) 
SH = style height 
h0 = hour angle (on sub-style line h0 = 0) 
δ = sun’s declination 
L = distance of nodus from origin along sloping style. 
T24 = time in 24-hour clock notation. 

The sign of SH is positive for a horizontal dial and negative 
for a vertical dial, as this gives the correct distances from 
the origin for the summer and winter solstice lines.  

Declination lines can be drawn using the polar co-ordinates 
R and X0 shown above.  

The position and separation of the hour lines also only de-
pends on the style height but they are labelled in accor-
dance with the relevant longitude or equivalent longitude or 
standard time zone for dials that are not horizontal or south 
facing vertical.  

HOUR LINE ANGLES 
The hour angle h0 used to determine the declination lines is 
the hour angle for a horizontal dial indicating local apparent 
time or a vertical dial indicating local apparent time at the 

location of equivalent latitude and longitude where the dial 
would be a south facing vertical dial.3 To calculate the hour 
line angles X for a horizontal dial indicating time for a stan-
dard time zone or a vertical declining dial indicating local 
apparent time at its actual location or standard time at that 
location is quite straightforward. In this case we use the 
formula: 

 

a) Standard Time 
The formula 5 above applies for all calculations, but the 
value of h must be chosen to fit the time indication re-
quired.  If the location is θ degrees east of the standard me-
ridian  

 

If the location is west of the standard meridian the value of 
θ is negative. 

These corrections apply to horizontal and vertical dials. 

b) Vertical Declining Dials 
A vertical declining dial at latitude φ and longitude λ de-
clining by angle d is the same as a south facing vertical dial 
at the equivalent latitude φ' and equivalent longitude λ' 
given by the formulae6 
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If the declination d is west of south the value of λ' is posi-
tive, if d is east of south it is negative. 

So in total we have 

 
And for a vertical dial 

SH = 90-φ' 

These formulae allow the hour line angles to be correctly 
labelled for any type of planar dial. It is for this reason that 
the vertical declining dial face in Fig. 1 has differently la-
belled hour lines from the vertical and are valid for differ-
ent latitudes. 

GRAPHICAL METHOD 
The graphical solution is simple to perform if a little less 
accurate. The diagram in Fig. 2 shows an origin O, a point 
C where a number of  lines converge. The extremes have 
been put at 23.43° apart to cover the solstices, and lines 
added at five degree intervals to give declination lines for 
those angles. A quarter arc protractor is included about O 
which allows the style height to be set. The distance OC is 
the distance L of the nodus from the origin along the slop-
ing style. The resulting dial can be scaled from the actual 
value of the distance of the nodus from the origin. 

The simplest way to use the diagram is to have a piece of 
tracing paper with a line across the centre, which will be the 
sub-style line and a line at right angles to it near the left 
side of the page. Push a drawing pin through O from the 
back of the page and pierce the tracing paper where the two 
lines intersect. Rotate the tracing paper so that the central 
line is set with the correct style height SH on the protractor. 
Mark along the central line the points W0, E0 and S0 at 
which the lines CS1, CE and CS2 intersect. The line 
through E0, the centre of these, at right angles to the central 
line, is the equinox line. The other two points are where the 

two solstice lines cross the sub-style line. The central line 
and the equinox line are shown dashed in Fig. 3. Now rotate 
the tracing paper a few degrees and mark with a straight 
edge, shown dotted on Fig. 3, where the line from O to the 
intersection with the equinox line cuts the lines CS1 and   
CS2 . These points are D1 and J1 and they are two more 
points on the solstice declination lines. Rotate the sheet a 
few more degrees and repeat the process for the next two 
points. Finally join up all the points Dn and Jn to give the 
solstice  lines. Declination lines for other angles can be 
drawn in the same way using the 5, 10, 15 and 20 degree 
lines in Fig. 2. 

CARTESIAN CO-ORDINATES 
In Fig. 4, an hyperbola with offset origin (-c, 0) is drawn 
and the distances a, b, and c are indicated. The formula for 
the hyperbola is 

 
 
or  

The asymptotes are 

 

 
For declination lines on a planar sundial the values of a, b, 
and c in terms of style height and declination are:- 

 

 

 

 

Fig. 3. Use of the protractor shown in  Fig. 2 for drawing  
declination lines. 

Fig. 4. Hyperbola and asymptotes indicating  
a, b and c. 
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This hyperbola can be drawn based on the origin of the dial 
and with the x axis as the sub-style line for any style height 
and declination using the cartesian co-ordinates x and y 
with the origin at the origin of the dial. This method may be 
found to be a more convenient way of plotting declination 
lines than the polar co-ordinate method above. The hour 
line angles  are still calculated according to equation 5 
above.  

EXISTING DIALS 
It is possible to check the correctness of the solstice lines on 
an existing dial such as that in Fig. 5 by measuring the dis-
tances along the sub-style line from the origin to the equi-
nox line OE and the solstice lines OS1  and OS2. 

The following relationships follow from the above formu-
lae:- 

This is always true. In addition we have:- 

where the line N1N2 is parallel to the sub-style line OS2. 
So for any existing dial the accuracy of its declination lines 
can easily be checked and its style height and nodus dis-
tance found with a few simple measurements. 

CONCLUSIONS 
It has been shown that the pattern of declination lines on a 
planar sundial is dependent only on the style height and it is 
symmetrical about the sub-style line.  

Three ways of constructing declination lines are given, all 
based on the origin of the dial. 

a) Polar co-ordinates using SH and h0. 

b) A graphical method which can be scaled to any size 
required. 

c) Cartesian co-ordinates using only SH. 

A simple method of checking declination lines on existing 
dials is also given which allows the value of SH and L to be 
found from a few simple measurements. 
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Fig. 5. Measurement points for checking declination lines 
on an existing dial. 
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The most celebrated instance of a reversal of the motion of 
the shadow on a sundial to indicate going back in time 
concerns the so-called Dial of Ahaz as recorded twice in the 
Old Testament, in 2 Kings ch. 20, vv 8-11, and Isaiah ch. 
38, vv. 7-8. King Hezekiah of Judah (reigned 716-687 
B.C.) became mortally ill. The prophet Isaiah gave an 
assurance that the Lord would heal him, but Hezekiah was 
unconvinced and demanded a sign that this would be so. 
Unfortunately, the two similar passages in which the 
ensuing miracle is recorded are amongst the most obscure 
linguistically in the whole of the Old Testament. A 
particular and crucial ambiguity is that the Hebrew word 
ma’a’loth may either be translated as ‘degrees’ or ‘steps’. 
Thus the Authorised Version of 1611 (AV) translates the 
passage from Kings as follows: 

9. And Isaiah said, This sign shalt thou have of the Lord, 
that the Lord will do the thing that he hath spoken: shall 
the shadow go forward ten degrees, or go back ten 
degrees? 

10. And Hezekiah answered, it is a little thing for the 
shadow to go down ten degrees: nay, but let the shadow 
return backward ten degrees. 

11. And Isaiah the prophet cried unto the Lord; and he 
brought the shadow ten degrees backward, by which it 
had gone down in the dial of Ahaz. (A marginal note 
has ‘degrees of Ahaz’. Ahaz was the father of 
Hezekiah.) 

A more accurate and up to date translation of the original 
Hebrew in the English Standard Version of 2002 (ESV) 
renders this passage: 

9. And Isaiah said, “This shall be the sign to you from the 
Lord, that the Lord will do the thing that he has 
promised: shall the shadow go forward ten steps, or go 
back ten steps?” 

10. And Hezekiah answered, “It is an easy thing for the 
shadow to lengthen ten steps. Rather let the shadow go 
back ten steps.” 

11. And Isaiah the prophet called to the Lord, and he 
brought the shadow back ten steps, by which it had gone 
down on the steps of Ahaz. 

A literal translation of the original Hebrew in the passage 
from Isaiah indicates even more clearly the difficulty of 
arriving at the true meaning of both passages: 

‘Behold, I will bring again backwards the shadow-degrees 
(or steps) which is gone down in the degrees (or steps) of 
Ahaz by the sun, backwards ten degrees (or steps). So 
returned the sun ten degrees (or steps) (by) which it had 
gone down.’  

It should be noted that although the AV includes the word 
dial in the passage from  Kings and sun dial in the passage 
from Isaiah, and the ESV includes the word dial in the 
passage from Isaiah (but neither word in the passage from  
Kings), there is no equivalent in the literal rendering of the 
original Hebrew text. In fact, there is no Hebrew word for 
sundial as such. However, the implication is clear – the 
context does require a ‘(Sun) Dial of Ahaz’ of some kind. 

Now let us examine the case for ‘steps’ as the proper 
translation of the Hebrew word ma’a’loth. Paradoxically, 
this rendering is given some credence by the first of six 
definitions of the word ‘degree’ in The Concise Oxford 
Dictionary: ‘Step (as) of staircase (archaic; perhaps so in 2 
Kings xx.9 and in Psalm-title Song of Degrees, Ps. 120-
134). The latter is a reference to the only other occurrence 
of the word ma’a’loth in the old Testament. Again, 
although these 15 Psalms are titled Songs of Degrees’ in the 
AV, modern translations have ‘Songs of Ascents’. They are 
said to have been sung by processions of pilgrims whilst 
ascending Mount Zion during the great Temple festivals. 

In Mrs Gatty’s Book of Sundials she writes:1 

The word ‘degrees’ in our translation of the Bible has 
been in the margin and the revised Version rendered 
‘steps’; and this reading has given rise to various 
suppositions. Some writers have thought that a pillar 
outside the king’s palace threw a shadow on the terraced 
walk, which indicated the time of day. Others have 
thought that the shadow was cast on steps in the open 
air ‘or more probably within a closed chamber, in which 
a ray of light was admitted from above, which passed 
from winter to summer up and down an apparatus in the 
form of steps’. 

We can indeed imagine a staircase in the palace of King 
Ahaz that did duty as a primitive kind of sundial by placing 
a pillar in the middle of the top step to act as a gnomon. It 
was the Jewish historian Josephus (c.37-c.100 A.D.) who 
first suggested that the stairway of the king’s palace might 
have constituted a type of sundial. During the morning the 
shadow cast by a pillar-gnomon would shorten and appear 

THE DIAL OF AHAZ 
 

JOHN WALL  
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circumference.’ This definition is normally applied to the 
measurement of the circumference of the earth, that is 
degrees of latitude or longitude. (We are all familiar with 
the rule of thumb that one degree of longitude represents 
four minutes as the earth revolves on its axis during the 
day.) However, it could equally well be applied to the 
circular chapter ring of a clock, whether of the 12 hour or 
24 hour kind, and crucially to a sundial that records a 24 
hour day/night. There are 1,440 minutes in a day, so it is 
hardly likely that a degree in the context of sundials ever 
represented such a small unit. Even the most sophisticated 
sundials are hard pressed to delineate minutes. It is equally 
unlikely that it ever represented the much larger unit of one 
hour. In practice the typical unit of a sundial capable of 
being read with the naked eye is five minutes.  

If we suppose that the Dial of Ahaz was sufficiently 
sophisticated to mark out degree-units of five minutes, and 
that the shadow cast by the declining sun was turned back 
ten degrees, the participants in the ‘miracle’ travelled back 
in time by the space of 50 minutes. In truth, even if the Dial 
of Ahaz was a scientific/mathematical instrument in the 
conventional sense, we will never know what precise period 
of time was covered by ten degrees in the narrative. At the 
time of King Hezekiah and King Ahaz the cultural milieu 
of their kingdom of Judah was the Babylonian civilisation 
that flourished in Mesopotamia on its eastern border, 
although Babylon in turn was under the political suzerainty 
of Assyria to the north. The invention of the sundial has 
been variously credited to the Babylonian and the Egyptian 
civilisations. “The Dial of Ahaz”, writes A.P. Herbert, 

to ascend the steps, and during the afternoon the shadow 
would lengthen and appear to descend the steps.  

Readers will have noticed that the ESV translation of Isaiah 
offers two alternative signs to King Hezekiah: either that 
the shadow should go forward (or lengthen) by ten steps or 
go backwards (or shorten) by ten steps. Hezekiah answered 
that because it would be an easy thing for the shadow to 
lengthen ten steps, he chose that it should go back ten steps. 
However, we have seen that if this conversation took place 
in the morning it would not in fact have been an easy thing 
for the shadow to lengthen by ten steps – that would have 
been contrary to its normal motion at that time. If the 
conversation took place in the afternoon, however, then 
indeed it would have been contrary to the laws of nature 
(that is, a miracle) for the shadow to go back ten steps since 
its normal motion would be to lengthen at that time. We 
conclude therefore that the ‘miracle’ must have taken place 
in the afternoon. It has been suggested that while Isaiah was 
talking to King Hezekiah the sun’s shadow had already 
moved ten steps; he promised to reverse the forward 
direction of the shadow and bring it back the distance it had 
travelled during that conversation. 

If the biblical account is to be believed, the greater, 
causative miracle consisted in a temporary reversal of the 
shadow-casting sun’s transit across the sky. In passing, 
Isaiah would have had his work cut out if he attempted to 
tamper with the pillar-gnomon so as to create the 
appearance of a miracle. 

Now let us consider the case for ‘degrees’ as the proper 
translation of the Hebrew word ma’a’loth. That rendering 
would in turn strengthen the case for understanding the Dial 
of Ahaz to be a scientific/mathematical instrument not far 
removed from the sundial with which we are familiar today; 
that is, it was not simply a primitive dial with a pillar for a 
gnomon. We are indebted to the translators of the AV for 
this interpretation, but their understanding of the word 
‘degree’ may have been rather different from our own. 
Moreover ‘degrees’ is dropped in favour of ‘steps’ in both 
accounts as rendered in the most up-to-date translation, the 
ESV. On the other hand the ESV retains the word ‘dial’ in 
both accounts, the implication being that it was a scientific 
instrument and not merely a pillar atop a stairway. If that 
was the case, then this is the first sundial of which we have 
a historical record. 

If ‘degrees’ is nearer to the understanding of the meaning of 
ma’a’loth in the minds of the authors of these two accounts, 
what exactly was that meaning? The six definitions 
provided by the Concise Oxford Dictionary are helpful 
here. They possess in common the notion of ascending, 
stage by stage, numerical or otherwise. Definition no. 5 is 
most pertinent to our purpose: ‘(Geometry etc.) unit of 
angular or circular-arc measurement, …. 1/360 of 

 

Fig. 1. Horologium Achaz. The gnomon, originally held in 
the astrologer’s right hand, is missing. 
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“was, almost certainly, an instrument of Babylonian 
inspiration, and the Babylonians were the first to divide the 
circle into 360 degrees”.   

If the proper translation of ma’a’loth is degrees, and if the 
event recorded in the bible was not in fact a miracle (that is 
the suspension or reversal of natural law), how might the 
deception have been achieved?  In her book Sundials and 
Roses of Yesterday, published in 1902,2 the American 
author Alice Morse Earle devotes an entire chapter to the 
‘Sun-Dial of Ahaz’. Her explanation depends on the 
refraction of a beam of light when passing through water. 
Her story begins with the migration of a mystical German 
sect, the Rosicrucians (named from Rosy + Cross) to 
Philadelphia in colonial New England in the year 1696. 
They brought with them a finely wrought sundial, the work 
of the mathematician and scientific instrument maker 
Christopher Schissler, as is evident from an inscription 
below the rim: Christophorus Schissler Geometricus ac 
Astronomicus Artifex Augustae Vindelicorum Faciebat 
Anno 1578. (Figure 1) On the rim stands a brass figure 
representing an astrologer, with extended right hand to hold 
a gnomon which, when the photograph was taken, was 
already missing. The under part of the base (Fig. 2) is finely 
inscribed with scenes from the biblical account, two 
mathematical diagrams, and a number of inscriptions in 
Latin, one of which, being translated, contains the 
extraordinary claim:  

“This semicircular shell explains the miracle of the 38th 
chapter of Isaiah. For if you fill it to the brim with 
water, the shadow of the sun is borne backward ten or 
twenty degrees. Moreover it indicates any common hour 
of the day, with what is called the hours of the planets.” 

It is evident that Miss Earle accepts this claim since she 
writes: “This relic is called the Horologium Achaz, the 
Sundial of Ahaz; in it is performed the miracle of Isaiah, - 
the shadow is cast backward ten degrees by the refraction 
of water.”  

The upper part of this artifact is the sundial proper. It is 10 
inches in diameter, bowl shaped, and about 1¾ inches in 
depth so as to contain a quantity of water. (Figure3.) Miss 
Earle comments: 

“By filling this shallow bowl with water or any 
transparent liquid, it can readily be seen that the 
indicated time was advanced or retarded by as much as 
the angle of refraction; thus was the miracle 
consummated.” 

The subsequent history of the Horologium Achaz is of 
unusual interest. When the company of Rosicrucians landed 
at Philadelphia, it was in the possession of one of their six 
pastors, by name Zimmerman. The scientific belongings of 
the last of these Rosicrucians, including the Horologium 
Achaz, were bequeathed to no less a luminary than Dr. 
Benjamin Franklin. (His interest in sundials is shown by his 
introduction of one, as first President of the United States of 
America, as a symbol in the first coinage of the new 
nation.)  He in turn passed the surviving scientific treasures 
of the Rosicrucians into the care of the American 
Philosophical Society. Appropriately, they are now 
preserved in Philadelphia, including the Horologium 
Achaz.   

The crucial question is whether the Horologium Achaz does 
in fact cast the shadow of its gnomon backward by ten 
degrees (or any other amount) through refraction when 
filled with water. One writer who was highly sceptical from 

Fig. 2. Horologium Achaz, inscribed base. 

Fig. 3. Horologium Achaz, inscribed bowl. 
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the outset was A.P. Herbert. In his delightful book Sundials 
Old and New: or Fun with the Sun,3 he proved 
experimentally to his own satisfaction that refraction could 
have played no part in the apparent miracle. 

If in fact no miracle did take place, how might Isaiah have 
interfered with the Dial of Ahaz so as to simulate one? The 
clue to one possibility is contained in Miss Earle’s 
description of Schissler’s replica, already quoted, as 
follows: “The upper plate is the sun-dial proper….with flat 
moveable rim an inch wide” (italics mine). If the hour lines 
on the Dial of Ahaz were inscribed on the rim, instead of 
just below it as inscribed by Schissler, then it would have 
been comparatively easy to move the rim surreptitiously, 
when his audience’s attention was distracted, by ten 
degrees, at the beginning of Isaiah’s demonstration. In like 
manner the rim could be restored to its former position 
when the demonstration was concluded. However, for my 
own part, I do not believe that Isaiah would have been 
guilty of such bare-faced deceit. Until such time as a 
rational and plausible explanation is advanced, I am 

inclined to believe that the ‘miracle of Ahaz’ really did take 
place. 
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Postcard Potpourri 5 – Thorpe Salvin Church 
 

Peter Ransom 

This undated postcard intrigued me by the sun faces that can be seen. 
Scanning and enlarging the image shows that there are south and east 
vertical dials with a presumed west dial. Closer inspection shows lines on 
the ball at the top so I suspect 
that this is a spherical dial. No 
trace of a movable gnomon can 
be seen. 

     St Peter’s Church at Thorpe 
Salvin is located at grid 
reference SK520811. Thorpe 
Salvin is in the West Riding of 
Yorkshire, 4 miles W. of 
Worksop. The church is 
remarkable for its handsome 
Saxon Doorway and the tower 
and major structures are 12th 
century. A picture of the dial 
can be seen at  
http://www.j31.co.uk/thorchu.htm 
and the gnomons are no longer 
present, though it does confirm 
a west vertical dial! Details of 
the dial can be found in the 
Sundial Register in Yorkshire 
(S) where it was last recorded 
by Tony Wood in 2001. 

pransom@btinternet.com 
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