Scaling the Universe via a Transit of Venus

On 3 June 1769 Captain Cook observed the Transit of Venus in Tahiti. The intention was
to use the observations to obtain an accurate estimate of the distance of the Earth from
the Sun. This document outlines the calculations that might have been planned.

Knowns and Unknowns

Thanks to Kepler and others, there was, by Cook’s time, a good understanding of the
orbits of the planets. It was known that orbits were elliptical and the eccentricities were
known too, as were the inclinations of the orbits to the plane of the ecliptic.

Given a specified time, the positions of the planets relative to the Sun and relative to one
another could be predicted fairly precisely. The great unknown was the scaling factor.
There was considerable uncertainty about any linear measurements across space.

A standard unit of distance used by astronomers is the semi-major axis of the Earth’s
orbit, the Astronomical Unit or AU. How could this be determined?

Triangulation

A naive approach to measuring astronomical distances is to employ triangulation. The
circle in Fig. 1 represents the Earth whose centre is at E. Two widely-separated observers
at A and B are simultaneously looking at the centre of Venus at V.

Fig. 1 — Using Triangulation

Suppose that E, A, B and V are in the same plane. If the geographical positions of A
and B are known, the distance AB can be calculated and, with a little effort, the angles
at A and B in the triangle ABV can be determined too. Given two angles and a side,
the triangle can be solved and the distance from the Earth to Venus can therefore be
established.

The difficulty is that Venus is so far away that the angle AV B, shown as 6,, is close to
zero. Typically it will be a fraction of an arc-minute. The lines AV and BV are almost
parallel and the sum of the angles at A and B is close to 180°.

It requires only the slightest errors in the measurements of the angles at A and B for the
sum of these angles, as measured, to exceed 180°.

This is therefore not a good method and any estimate of the distance of the Earth from
Venus derived in this way will be unsafe.



Using a Transit of Venus

The geometry of Fig. 1 presents the problem and, in Captain Cook’s day, it was thought
that observing a Transit of Venus would provide a solution. During such a Transit, the
observers at A and B would each see Venus crossing the Sun but the apparent paths taken
would differ slightly and this difference could be used to determine 6,,.

Fig. 2 shows the general arrangement of the Earth (centre at F) and the Sun (centre at S)
during a Transit of Venus (centre at V'). The plane of the figure is that defined by the axis
of the Earth (shown as an inclined broken line whose upper end is the north pole) and the
centre of the Sun S.

In the course of the Transit, Venus moves from below the plane of the figure to above that
plane in a direction which is not quite normal to the plane. At the instant represented, V'
is in the plane.

Points A, and B, (on the Earth) are as points A and B in Fig. 1 and, to make the
calculations easier, these two points are on a common line of longitude where local sun
time is noon in the figure. Accordingly, A. and B, are also in the plane of the figure.

The two lines A,V and B,V are produced and intersect the surface of the Sun at A, and By
respectively. At the instant represented, an observer at A. sees Venus apparently crossing
the Sun at A; and an observer at B, sees Venus apparently crossing the Sun at Bs.

Fig. 2 — A Transit of Venus

The observers have no strong sense of the Sun being approximately spherical. Each will
perceive the Sun as a circle, being the cross-section of the Sun normal to the observer’s
line of sight. This circle is the solar disc and the broken line through S is the approximate
position of the diameter of this disc that lies in the plane of the figure. Strictly, the
observers see two different solar discs but their angular separation is negligible.

As seen by the observer at A., the path apparently traced by Venus across the Sun is further
from the centre of the solar disc than the path seen by the observer at B.. Accordingly,
the path seen from A, is shorter and takes less time.

Timing the Transit is crucial to the method as a whole. By noting the difference in transit
times recorded by the two observers, one could (it was hoped) compute a good estimate
of the separation of the two paths.

An added complication is the rotation of the Earth. A Transit of Venus lasts about 6 hours
during which the Earth rotates about 90°. In consequence, A, and B, are above the plane
of the figure for the first three hours and below the plane for the last three hours. This
rotation will be ignored for the moment.



The calculations make use of three distances:

r. = S the Centre of the Earth to the Centre of the Sun
r, = V.S the Centre of the Venus to the Centre of the Sun
rq = EV the Centre of the Earth to the Centre of Venus

These three values are not only unknowns but they are also variables. In particular, neither
the Earth nor Venus is a constant distance from the Sun. The ratio r, /7. though can (and
could) be predicted fairly precisely for any specified moment. Also, during a Transit, r4 is
(almost exactly) the difference r. — r,.

None of the three values features directly in Fig. 2 and it is helpful to derive from that
figure the geometrical construction which is shown in Fig. 3. In this, the distance r. is
taken as 1 unit and the values r, and rg4 are derived from the ratio and the difference.
An arc is drawn centre V' and radius r4 and this passes through the centre of the Earth E.
A second arc is drawn with the same centre V' but radius r, and this passes through the
centre of the Sun S.

Fig. 3 — Geometrical Construction

The two lines ALV A’ and B,V B! correspond to the lines A,V As and B,V B; in Fig. 2
but have been extended to meet the two arcs. The angle of intersection between the two
lines is again 6,.

The third arc in Fig. 3 has centre A, and radius r.. Since ALV + VA, =r;+1r, = re
this arc passes through A’ but it does not, quite, pass through B.. Instead it passes
through B!/ which is the point where the construction line A, B’ produced meets the arc.
Note that ALBY) = AL Al =r..

An important angle is A, A, B” which is shown as 6.. It is related to 6,:

arc ALB. ~arc ALB!  so 1.0, =10, (1)
AISOZ A/ B/
arc ALB. =140, ~ (ro — 14,)0, S16) 0, ~ % (2)

Taking (1) and (2) together and treating approximations as equalities:

/ / / / / !/
arc A,B, _ ry arc A B, ry arc A.B]

rele = TU'—(T’e i = i :_:) SO Te = E( — ;_:) 0 (3)
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The Distance of the Earth from the Sun

The right-hand side of (3) is an expression for the distance of the Earth from the Sun.
Consider the various terms in that expression:

ry arc ALB!
Te = T
re (1— i)@e
The ratio .,/

As already noted, the ratio r,/r. (which appears twice in the expression) can and could
be determined fairly precisely. Its value is about 0.72.

The arc ALB.

The principal difficulty when preparing diagrams of the Sun and planets is that, in most
cases, scale drawings are impracticable. For example, the angle 6, is about one arc-minute
which means that the lines A,V and B,V are almost parallel.

Unlike the previous figures, Fig. 4 is close to being a proper scale drawing. This figure
shows the Earth end of the lines from A, and B, to Venus. On this scale, Venus is over
100m off to the right.

Fig. 4/ — The Arc ALB/

The arc AL B/ which passes through the centre of the Earth is a very close approximation
to a straight line. It is drawn vertically in Fig. 4, perpendicular to the parallel lines which
are drawn horizontally.

The Earth’s axis, the broken line through E, is inclined at just under 23° to the vertical
which corresponds to the declination of the Sun at the time of the Transit on 8 June 2004.
Knowing the declination of the Sun and the latitude of A. and B., it is not hard to
determine A, B!, the arc A, B/ in the expression.

The angle 6.

The angle 6. is the outstanding term in the expression. Determining its value requires the
observations provided by the observers at A, and B, to be analysed together.

In Fig. 2 the observer at A, sees the Sun quite low in the sky to the south and the observer
at B, sees the Sun quite high in the sky to the north. The observers will have different
perceptions about which point on the solar disc is uppermost. There is a need to agree a
common orientation.
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A standard approach is to regard the solar disc as a small circle marked out on the celestial
sphere. Fig. 5 shows the solar disc as it might be drawn on a chart, with the north celestial
pole in the direction indicated by N.

The broken line which forms the vertical diameter corresponds to the broken line through S
in Fig. 2. This is in the same plane as (but not parallel to) the Earth’s axis and is part of
a great circle which extends from the north celestial pole to the south celestial pole.

N

N

Fig. 5 — The Solar Disc

Suppose that the two Earth-bound observers at A, and B, are each asked to sketch the
apparent passage of Venus across the solar disc. With a considerable amount of wishful
thinking, one may imagine that when the two sketches are superimposed they appear as
the inclined lines in Fig. 5.

In each case, the passage of Venus is from left to right along a path which slopes slightly
downwards. In the Transit of 8 June 2004, the slope was about 13%0.

At the instant Venus crosses the plane defined by the Earth’s axis and the centre of the
Sun (the plane of Figs 2 and 3), the observer at A, records Venus at A, and the observer at
B, records Venus at B.. These points on the solar disc are where the lines A.V produced
and B.V produced meet the broken line through S in Fig. 2. In practice, they almost
coincide with the points A’ and B/ in Fig. 3.

In the contrived circumstances of Fig. 5, the separation of the inclined lines is equivalent
to a quarter of a solar diameter. On the celestial sphere, all distances are given as angles
and, taking the diameter of the solar disc as 32’, the observers conclude that their two
paths are 8 apart.

The angular separation of A’ and B/ is the angle 6., the outstanding unknown in (3).
Taking the separation of the lines as 8 and the common slope as 13%0, the result is:

= m arc-minutes ~ 8.2 arc-minutes ( 4)

The true angular separation of A, and B/ is much less than one arc-minute and the two
inclined lines would be less than 1mm apart when drawn to scale in Fig. 5. Any attempt
based on sketching apparent paths across the solar disc is destined to fail. There is a more
precise way of estimating the separation of the paths. ..
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Determining §.— a more refined approach

Many details about the 1769 Transit would have been known before Cook set sail. In
particular, the time taken for Venus to cross the face of the Sun when viewed by an
observer hypothetically placed at the centre of the Earth could have been predicted fairly
precisely. For an outline of the procedure, see the Appendix at the end of this document.

The principal unknown (in some sense the object of the expedition) was the size of the
Earth as a fraction of an Astronomical Unit. It would not therefore have been possible
to predict how much effect the rotation of the Earth would have on the time of Transit
recorded by an observer on the surface of the Earth.

Had Cook been observing the 2004 Transit, he would have carried with him the information
which is summarised in Fig. 6. This shows, almost to scale, the apparent path of Venus
across the Sun as viewed from the centre of the Earth. The north celestial pole is again
off the top of the figure in the direction indicated by N.

The start of the path, marked as Vjs, is shown as having a position angle of 119°. This
angle is NSVs, the angle of the line SVi5 measured anti-clockwise round from SN. The
end of the path, marked as V34, has a position angle of 214°. This is the angle of the line
SV34 again measured anti-clockwise round from SN.

N

Time 5h 30m UT
Position Angle 119° Vi,
" Time 11h 14m UT

V34 Position Angle 214°

Fig. 6 — The Solar Disc on 8 June 2004

During a Transit there are four so-called contacts. First contact is when Venus first touches
the rim of the solar disc and second contact is when Venus is just wholly inside the rim.
Third and fourth contacts are the corresponding instants at egress. In the figure, V75 is the
point on the rim of the solar disc marking the centre of Venus at a time halfway between
first and second contact. V34 is the point halfway between third and fourth contacts.

From the two position angles it is straightforward to calculate the downward slope of the
line V12V34 as 134°.

Cook would also have known, fairly precisely, the local times (in Tahiti) that Venus would
be expected at V2 and V34. On 8 June 2004, these times in the U.K. were approximately
5h 30m UT and 11h 14m UT.

Point T on the transit path indicates the position of Venus in mid-Transit. Given that the
path slopes downwards, this point is reached some time before the position angle of Venus
is 180° (at the point of intersection of the transit path and the broken line).
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Taking the (angular) radius of the Sun as 16 arc-minutes, and using the information just
given, one can readily calculate the following:

Difference in Position Angle: P34 — P15 = 214° — 119°  95°

Angular distance V15V34 = 2 X 16 sin(95/2) 23" 36"
Angular distance ST = 16 cos(95/2) 10" 49”
Time of Transit: 11h 14m — 5h 30m 344 minutes

The difference in position angle P34 — Pio of 95° can be re-expressed:

ST 10.81
Py — P =2 X% cos™ ! (SVQ) =2 x cos ! <T>

In this, 10.81" corresponds to 10’ 49” and it is instructive to see the effect of reducing this
value half an arc-minute to 10.31" and increasing it half an arc-minute to 11.31":

P34 — P12 ST V12V34 Time

2 x cos~1(10.31/16) 10’ 19” 24’ 28"  356m 49s
2 x cos~1(10.81/16) 10’ 49” 23/ 36"  344m 00s
2 x cos~1(11.31/16) 1119”7 2238  330m 03s

The three entries in this table correspond to three views of the passage of Venus across
the solar disc on 8 June 2004. The middle entry corresponds to the path shown in Fig. 6
and refers to the view from the centre of the Earth. Deem this to be the base case.

The first entry corresponds to a more southerly viewpoint where the path is displaced 30"
towards the centre of the solar disc. The third entry corresponds to a more northerly
viewpoint where the path is displaced 30" further from the centre.

Displacing the path 30” towards the centre extends Vi5V34 by 52" whereas displacing the
path 30" away from the centre reduces Vi5V34 by 58”. The difference is accounted for by
the assumption that the solar disc is circular.

It makes little sense for an observer to attempt to measure the angular displacement V;5V34
directly. The difference from the base case is too small. Measuring the time of Transit
is altogether more profitable. Shifting one’s viewpoint sufficiently to displace the transit
path just half an arc-minute changes the time of Transit by nearly a quarter of an hour.
By extending the table of ST versus Time an observer would be able to estimate ST to
high precision. An error in the transit time of one minute would lead to an error in the
estimate of ST of about two arc-seconds. The organisers of Cook’s expedition hoped to
be able to estimate the time of Transit to a couple of seconds (of time!).

Using the time of Transit provides a good value of ST. The hypothetical observers can
now report their separate estimates of ST. The difference between the two values can be
used as a substitute for the top line in (4) to give what is now a good estimate for 0,:

STy — STa

cos(13.5) (5)
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Tail-piece
In the interests of keeping the foregoing discussion within reasonable bounds, a few matters
have been either over-simplified or overlooked.

For example, angles have generally been quoted in degrees whereas many of the expressions
require the use of radians. Most notably, 6. in (3) should be in radians.

The information about the 2004 Transit, presented in Fig. 6, is taken from the 2004 edition
of Whitaker’s Almanack. Almost certainly the position angles and times are appropriate
for an observer in the U.K. and not for a hypothetical observer at the centre of the Earth.
The procedure is sound even if the data are not quite appropriate.

A minor matter is that 6. as originally defined and as used in (3) is the angle subtended
at point A, in Fig. 3 which is not quite the position of the observer who is at point A, in
Fig. 2. Compared with the distance of the Earth to the Sun, the difference in position of
A, and A’ is negligible so this issue may safely be ignored.

A much more significant shortcoming is a consequence of the Earth rotating about a quarter
of a revolution during the course of a Transit of Venus. As the Earth travels along its orbit,
an observer on the equator at noon sustains a retrograde motion which subtracts a small
amount from the orbital speed. This has the effect of reducing the apparent Transit time
by the order of 5 to 10 minutes.

It would have been difficult to take this into account in Cook’s day. One approach would
have been to have two observers on the same longitude but at equal and opposite latitudes.
The effect would then have been the same for both. It is, of course, essential to choose
locations where the entire transit can be observed otherwise it cannot be timed.

Alternatively, the effect could be ignored initially and then, after a provisional estimate of
the Astronomical Unit had been determined, the effect could be taken into account and
the estimate revised.

Cook himself encountered another difficulty. When observing the beginning and end of
the Transit he and his colleagues were unable to agree on the precise times of the contacts.
The problem was what is sometimes called the black-drop effect. The instants, particularly
of the second and third contacts, are not very clear.

Following the 1769 Transit, around 600 papers on the subject were presented to the Royal
Society who had sponsored Cook’s expedition. A particularly impressive analysis of the
observation data from five different locations (including Cook’s in Tahiti) was made by
Thomas Hornsby of Oxford University. This gave a value for the Earth-Sun distance
which was within one percent of today’s accepted value and a definite improvement on
previous estimates.

Further historical details of Cook’s voyage can be found via:

http://transitofvenus.auckland.ac.nz/explorations

F.H. King
21 August 2004



Appendix — Forecasting the Transit Time

This appendix provides further understanding of the orbits of the Earth and Venus and
outlines a simple approach to estimating the transit time. There is no attempt to provide
a full analysis.

Coplaner Orbits

Fig. 7 shows a hypothetical case where, at mid-Transit, the centres of the Earth, Venus
and the Sun (Ep, Vy and S respectively) exactly align. An observer at the centre of the
Earth would see Venus in the centre of the solar disc.

In a grossly exaggerated way, points F; and V; mark the positions of the Earth and Venus
one hour later. Both bodies have moved along their orbits but Venus has moved rather
more than the Earth.

Eo Vi 0.0007168 radians

Va

Ey
1% 0.0004483 radians

Fig. 7 — One Hour Segments of Two Coplaner Orbits

As a first step, suppose that the orbits of the two planets are circular and coplanar and
use the following data:

Radius of Orbit  Orbital Period

Earth 1.0000 AU 365.25 days
Venus 0.7232 AU 224.7 days

The radius of the Earth’s orbit, EyS, is given as 1 Astronomical Unit, 1 AU, and that
of Venus, VS, is given as 0.7232 AU. This fraction would have been known to a fair
approximation in Cook’s day as would the orbital periods of the two bodies (measured in
Earth days). The great unknown was how many miles there were in 1 AU.

It is easy to determine the angular displacement of each body around its orbit in one hour:

2T
Earth=———— = 0. 1 i
art YRVETTET 0.0007168 radians (6)
Venus = —2"  — 0.0011651 radi (7)
enus = 24 % 2247 = V. raalans

The angular displacement of the Earth, 0.0007168 radians, is shown in the figure as is the
difference between the two displacements, 0.0004483 radians.

-9 —



An Earth-bound observer would not readily appreciate that in one hour Venus moves from
Vo to V7. Given the movement of the Earth, the appearance would be of movement from
the point shown as V, in the figure to V3. To determine this as an apparent angular
movement across the solar disc, first compute:

Vo V1 = 0.7232 x 0.0004483 = 0.0003243 AU
E1V, =1.0000 — 0.7232 = 0.2768 AU

The apparent angular displacement in one hour is therefore:

tan-? (0.0003243

09768 > = 0.001172 radians (8)

Expressed in arc-minutes:

180
Angular movement = 60 x — x 0.001172 = 4.03 arc-minutes per hour (9)
s

Using the data given previously for the 2004 Transit, the transit path was 23.59" and this
took 344 minutes which translates into 4.12 arc-minutes per hour. The value given in (9)
is too low.

Different orbital planes

The orbits of the Earth and Venus are not coplanar. The two orbital planes are inclined
at an angle of about 3.4° one relative to the other.

The line of intersection of the orbital planes of two planets is known as the line of nodes.
Each planet crosses this line twice during an orbit. A Transit occurs when the two planets
cross the line of nodes almost simultaneously and on the same side of the Sun.

In the hypothetical circumstances of Fig. 7, the line of nodes is EyVyS. The plane defined
by the points Fy, F1 and S is the plane of the Earth’s orbit and point V; is not in this
plane. The view from Ej looking towards the Sun is approximately as illustrated in Fig. 8.

Vo 0.7232 x 0.0007168 AU Vi
[ - 0.0003266 AU

0.7232 x 0.0011651 AU oy

Fig. 8 — One Hour Segments of Two Non-Coplaner Orbits

In the figure, line V)V, is in the plane of the Earth’s orbit and corresponds to the angular
displacement of the Earth in one hour, 0.0007168 radians [from (6)]. The line V5V; is
inclined at 3.4° to VjV, and corresponds to the angular displacement of Venus in one
hour, 0.0011651 radians [from (7)].
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To derive the absolute distances VyV, and VyVi, the angles have to be multiplied by the
distance of Venus from the Sun, 0.7232 AU. Viewed from the Earth, Venus appears to
move from V. to V7. Using the Cosine Rule, this displacement is about 0.0003266 AU, as
shown in the figure.

The apparent angular displacement in one hour is therefore:

tan—1 <0.0003266

09763 ) = 0.001180 radians

Expressed in arc-minutes:

180
Angular movement = 60 x — x 0.001180 = 4.06 arc-minutes per hour (10)
7r
Fig. 8 has been drawn using ecliptic coordinates and the line V5V, which has been drawn
horizontally is in the plane of the Earth’s orbit, the Ecliptic plane. The apparent angular
displacement of 4.06" can be resolved horizontally and vertically:

8'|79 4.01'

0.62’
4.06’

Fig. 9 — Ecliptic Coordinates

The horizontal component, 4.01’, is the relative change in celestial longitude in one hour.
The vertical component, 0.62’, is the relative change in celestial latitude in one hour.

At alignment, when viewed from the centre of the Earth, the centres of the Sun and Venus
coincide on the celestial sphere. The Sun and Venus have the same latitude and longitude.

Assuming a plane circular orbit, the Sun’s latitude is always zero and its longitude increases
at a constant rate. The motion of Venus is much less regular. For the first hour after
alignment, the longitude and latitude both decrease. The net change in longitude of 4.01’
is the combination of the increase of the Sun’s longitude plus the decrease in Venus’s
longitude. The net change in latitude of 0.62" is due to Venus alone.

The downward angle of 8.79° shown in Fig. 9 is less than the downward angle of 13%O
in Fig. 6. The difference is largely accounted for by Fig. 6 being drawn using equatorial
coordinates. Any line drawn horizontally in Fig. 6 is parallel to the celestial equator, not
parallel to the ecliptic.

The 2004 Transit was about two weeks before the summer solstice. Using equatorial
coordinates, the Sun was still heading northwards. Viewed from the Sun, the Earth was
heading southwards with a downward slope of about 5.70°. Adding this value to 8.79°
gives a combined result which exceeds the angle of 13%o in Fig. 6.

The net angle of slope is a little too large and the value given in (10) is a little too low.
The model needs further enhancement. The most important omission is that no account
is taken of the Earth’s rotation.
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The Effect of the Earth’s Rotation

Imagine an observer on the surface of the Earth on the line EyS in Fig. 7. The observer is
displaced from Fj towards S by the radius of the Earth. One hour later the centre of the
Earth has moved to E; but the observer is not quite on the line F1S. The Earth rotates
15° anti-clockwise so the observer will not have travelled quite so far as the centre of the
Earth.

Accordingly, VoV, will be slightly reduced and V,. V; (Fig. 8) will be slightly increased. This
will increase the value given by (10) but by an amount which depends on the Observer’s
latitude.

Further Refinements

Further refinements would include taking into account that the orbits are not circular and
that centres of the Earth, Venus and the Sun do not ever exactly align. Real transits take
place close to, but not actually on, the line of nodes.
The additional calculation required to refine the value given in (10) and to determine the
position angles in Fig. 6 will not be considered here.
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